IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp655-669.html
   My bibliography  Save this article

Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis

Author

Listed:
  • Gunjo, Dawit Gudeta
  • Mahanta, Pinakeswar
  • Robi, Puthuveettil Sreedharan

Abstract

Computational fluid dynamics model for a flat plate solar collector was developed to predict the performance of a single bent riser tube attached to an absorber plate. The model was validated by carrying out experiments. The exergy and energy efficiencies, overall heat loss coefficient, outlet water and absorber plate temperature of the solar collector were investigated. Maximum thermal efficiency of 71% was obtained with 60 °C outlet water temperature for the investigated solar collector. Comparison of numerical values with the experimental results indicated minimal deviation error. The low values of deviation error establish the confidence in the predictive capabilities of the developed model. Effects of various operating parameters such as mass flow rate, working fluids, ambient temperature, inlet water temperature, collector heat loss factor and solar insolation on exergy and energy efficiencies were also investigated. Parametric study revealed increase in exergy efficiency of the collector with increase in collector heat loss factor, solar insolation and decreases with rise in ambient temperature.

Suggested Citation

  • Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:655-669
    DOI: 10.1016/j.renene.2017.07.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurtbas, İrfan & Durmus̨, Aydın, 2004. "Efficiency and exergy analysis of a new solar air heater," Renewable Energy, Elsevier, vol. 29(9), pages 1489-1501.
    2. Xiaowu, Wang & Ben, Hua, 2005. "Exergy analysis of domestic-scale solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 638-645, December.
    3. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    4. Dagdougui, Hanane & Ouammi, Ahmed & Robba, Michela & Sacile, Roberto, 2011. "Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tétouan (Morocco)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 630-638, January.
    5. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    6. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
    7. Torres-Reyes, E & Navarrete-González, J.J & Zaleta-Aguilar, A & Cervantes-de Gortari, J.G, 2003. "Optimal process of solar to thermal energy conversion and design of irreversible flat-plate solar collectors," Energy, Elsevier, vol. 28(2), pages 99-113.
    8. Gadi, Mohamed B., 2000. "Design and simulation of a new energy conscious system, (basic concept)," Applied Energy, Elsevier, vol. 65(1-4), pages 349-353, April.
    9. Selmi, Mohamed & Al-Khawaja, Mohammed J. & Marafia, Abdulhamid, 2008. "Validation of CFD simulation for flat plate solar energy collector," Renewable Energy, Elsevier, vol. 33(3), pages 383-387.
    10. He, Wei & Hong, Xiaoqiang & Luo, Bingqing & Chen, Hongbing & Ji, Jie, 2016. "CFD and comparative study on the dual-function solar collectors with and without tile-shaped covers in water heating mode," Renewable Energy, Elsevier, vol. 86(C), pages 1205-1214.
    11. Gadi, Mohamed B., 2000. "Design and simulation of a new energy-conscious system (CFD and solar simulation)," Applied Energy, Elsevier, vol. 65(1-4), pages 251-256, April.
    12. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    13. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    14. Keyanpour-Rad, M. & Haghgou, H.R. & Bahar, F. & Afshari, E., 2000. "Feasibility study of the application of solar heating systems in Iran," Renewable Energy, Elsevier, vol. 20(3), pages 333-345.
    15. Gadi, Mohamed B., 2000. "Design and simulation of a new energy conscious system, (ventilation and thermal performance simulation)," Applied Energy, Elsevier, vol. 65(1-4), pages 355-366, April.
    16. Jafarkazemi, Farzad & Ahmadifard, Emad, 2013. "Energetic and exergetic evaluation of flat plate solar collectors," Renewable Energy, Elsevier, vol. 56(C), pages 55-63.
    17. Shariah, Adnan & Shalabi, Bassam, 1997. "Optimal design for a thermosyphon solar water heater," Renewable Energy, Elsevier, vol. 11(3), pages 351-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gunjo, Dawit Gudeta & Jena, Smruti Ranjan & Mahanta, Pinakeswar & Robi, P.S., 2018. "Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application," Renewable Energy, Elsevier, vol. 121(C), pages 652-665.
    2. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    3. Moldovan, Macedon & Rusea, Ioana & Visa, Ion, 2021. "Optimising the thickness of the water layer in a triangle solar thermal collector," Renewable Energy, Elsevier, vol. 173(C), pages 381-388.
    4. Minjung Lee & Yunchan Shin & Honghyun Cho, 2020. "Performance Evaluation of Flat Plate and Vacuum Tube Solar Collectors by Applying a MWCNT/Fe 3 O 4 Binary Nanofluid," Energies, MDPI, vol. 13(7), pages 1-17, April.
    5. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    6. Jianhao Sheng & Dianwei Qi & Hongchao Yan & Wanjiang Wang & Tao Wang, 2022. "Experimental Study on Low Carbonization of Green Building Based on New Membrane Structure Solar Sustainable Heat Collection," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    7. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions," Renewable Energy, Elsevier, vol. 138(C), pages 754-763.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
    2. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    3. Alta, Deniz & Bilgili, Emin & Ertekin, C. & Yaldiz, Osman, 2010. "Experimental investigation of three different solar air heaters: Energy and exergy analyses," Applied Energy, Elsevier, vol. 87(10), pages 2953-2973, October.
    4. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    5. Korres, Dimitrios & Tzivanidis, Christos, 2018. "A new mini-CPC with a U-type evacuated tube under thermal and optical investigation," Renewable Energy, Elsevier, vol. 128(PB), pages 529-540.
    6. Subiantoro, Alison & Ooi, Kim Tiow, 2013. "Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing," Applied Energy, Elsevier, vol. 104(C), pages 392-399.
    7. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.
    8. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    9. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    10. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    11. R. M. Mostafizur & M. G. Rasul & M. N. Nabi, 2021. "Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach," Energies, MDPI, vol. 14(14), pages 1-19, July.
    12. Agathokleous, Rafaela A. & Kalogirou, Soteris A. & Karellas, Sotirios, 2018. "Exergy analysis of a naturally ventilated Building Integrated Photovoltaic/Thermal (BIPV/T) system," Renewable Energy, Elsevier, vol. 128(PB), pages 541-552.
    13. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Moldovan, Macedon & Rusea, Ioana & Visa, Ion, 2021. "Optimising the thickness of the water layer in a triangle solar thermal collector," Renewable Energy, Elsevier, vol. 173(C), pages 381-388.
    15. Hadavand, M. & Yaghoubi, M., 2008. "Thermal behavior of curved roof buildings exposed to solar radiation and wind flow for various orientations," Applied Energy, Elsevier, vol. 85(8), pages 663-679, August.
    16. Kazemian, Arash & Ma, Tao & Hongxing, Yang, 2024. "Evaluation of various collector configurations for a photovoltaic thermal system to achieve high performance, low cost, and lightweight," Applied Energy, Elsevier, vol. 357(C).
    17. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    18. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    19. Murat Kunelbayev & Yedilkhan Amirgaliyev & Talgat Sundetov, 2022. "Improving the Efficiency of Environmental Temperature Control in Homes and Buildings," Energies, MDPI, vol. 15(23), pages 1-15, November.
    20. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:655-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.