IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v39y2014icp51-64.html
   My bibliography  Save this article

Integrated collector storage solar water heater with compound parabolic concentrator – development and progress

Author

Listed:
  • Devanarayanan, K.
  • Kalidasa Murugavel, K.

Abstract

This paper presents up to date developments in integrated collector storage solar water heater (ICSSWH) using compound parabolic concentrator (CPC) collector. Performance of integrated compound parabolic concentrator storage solar water heater (ICPCSSWH) is affected by various parameters such as positioning and arrangements of water tanks, reflector types, absorber surfaces, glazing and other design parameters. The various designs of ICPCSSWHs and their performance analysis are reviewed. Recent developments in CPC based ICSSWH show a hopeful design to consume solar energy as a reliable heating source for water heating applications. But, by its collective collection and storage function undergoes significant thermal losses to ambient, particularly at non-collection periods.

Suggested Citation

  • Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
  • Handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:51-64
    DOI: 10.1016/j.rser.2014.07.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang, Pei & Jing, Li & Jie, Ji, 2011. "Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units," Renewable Energy, Elsevier, vol. 36(9), pages 2324-2333.
    2. Tripanagnostopoulos, Y. & Yianoulis, P. & Papaefthimiou, S. & Souliotis, M. & Nousia, Th., 1999. "Cost effective asymmetric CPC solar collectors," Renewable Energy, Elsevier, vol. 16(1), pages 628-631.
    3. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal cylindrical storage tank and reflector of CPC or involute geometry," Renewable Energy, Elsevier, vol. 29(1), pages 13-38.
    4. Kothdiwala, A.Farouk & Eames, P.C. & Norton, B., 1997. "Experimental analysis and performance of an asymmetric inverted absorber compound parabolic concentrating solar collector at various absorber gap configurations," Renewable Energy, Elsevier, vol. 10(2), pages 235-238.
    5. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "ICS solar systems with horizontal (E–W) and vertical (N–S) cylindrical water storage tank," Renewable Energy, Elsevier, vol. 29(1), pages 73-96.
    6. Harmim, A. & Merzouk, M. & Boukar, M. & Amar, M., 2012. "Performance study of a box-type solar cooker employing an asymmetric compound parabolic concentrator," Energy, Elsevier, vol. 47(1), pages 471-480.
    7. Kalogirou, Soteris A., 1999. "Performance enhancement of an integrated collector storage hot water system," Renewable Energy, Elsevier, vol. 16(1), pages 652-655.
    8. Henderson, D. & Junaidi, H. & Muneer, T. & Grassie, T. & Currie, J., 2007. "Experimental and CFD investigation of an ICSSWH at various inclinations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1087-1116, August.
    9. Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
    10. Kalogirou, Soteris, 1997. "Design, construction, performance evaluation and economic analysis of an integrated collector storage system," Renewable Energy, Elsevier, vol. 12(2), pages 179-192.
    11. Smyth, M. & Eames, P.C. & Norton, B., 2006. "Integrated collector storage solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 503-538, December.
    12. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    13. Tripanagnostopoulos, Y. & Souliotis, M. & Nousia, Th., 1999. "Solar ICS systems with two cylindrical storage tanks," Renewable Energy, Elsevier, vol. 16(1), pages 665-668.
    14. Tanveer, Muhammad & Tezcanli Guyer, Gokce, 2013. "Solar assisted photo degradation of wastewater by compound parabolic collectors: Review of design and operational parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 534-543.
    15. González, Manuel I. & Rodríguez, Luis R. & Lucio, Jesús H., 2009. "Evaluation of thermal parameters and simulation of a solar-powered, solid-sorption chiller with a CPC collector," Renewable Energy, Elsevier, vol. 34(3), pages 570-577.
    16. Khonkar, H.E.I. & Sayigh, A.A.M., 1995. "Optimization of the tubular absorber using a compound parabolic concentrator," Renewable Energy, Elsevier, vol. 6(1), pages 17-21.
    17. Souliotis, M. & Chemisana, D. & Caouris, Y.G. & Tripanagnostopoulos, Y., 2013. "Experimental study of integrated collector storage solar water heaters," Renewable Energy, Elsevier, vol. 50(C), pages 1083-1094.
    18. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    19. Tripanagnostopoulos, Y. & Souliotis, M., 2004. "Integrated collector storage solar systems with asymmetric CPC reflectors," Renewable Energy, Elsevier, vol. 29(2), pages 223-248.
    20. Nkwetta, Dan Nchelatebe & Smyth, Mervyn, 2012. "Performance analysis and comparison of concentrated evacuated tube heat pipe solar collectors," Applied Energy, Elsevier, vol. 98(C), pages 22-32.
    21. Souliotis, M. & Tripanagnostopoulos, Y., 2008. "Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater," Renewable Energy, Elsevier, vol. 33(5), pages 846-858.
    22. Tang, Runsheng & Wang, Jinfu, 2013. "A note on multiple reflections of radiation within CPCs and its effect on calculations of energy collection," Renewable Energy, Elsevier, vol. 57(C), pages 490-496.
    23. Norton, B. & Kothdiwala, A.F. & Eames, P.C., 1994. "Effect of inclination on the performance of CPC solar energy collectors," Renewable Energy, Elsevier, vol. 5(1), pages 357-367.
    24. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, Md. Yeasir & Monir, Minhaj Uddin & Ahmed, Mohammad Tofayal & Aziz, Azrina Abd & Shovon, Shaik Muntasir & Ahamed Akash, Faysal & Hossain Khan, Mohammad Forrukh & Faruque, Md. Jamal & Islam Rifat, 2022. "Sustainable energy sources in Bangladesh: A review on present and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Azzolin, Marco & Mariani, Andrea & Moro, Lorenzo & Tolotto, Andrea & Toninelli, Paolo & Del Col, Davide, 2018. "Mathematical model of a thermosyphon integrated storage solar collector," Renewable Energy, Elsevier, vol. 128(PA), pages 400-415.
    3. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    4. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    5. Harmim, A. & Boukar, M. & Amar, M. & Haida, Aek, 2019. "Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade," Energy, Elsevier, vol. 166(C), pages 59-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    2. Souliotis, M. & Kalogirou, S. & Tripanagnostopoulos, Y., 2009. "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS," Renewable Energy, Elsevier, vol. 34(5), pages 1333-1339.
    3. Souliotis, Manolis & Papaefthimiou, Spiros & Caouris, Yiannis G. & Zacharopoulos, Aggelos & Quinlan, Patrick & Smyth, Mervyn, 2017. "Integrated collector storage solar water heater under partial vacuum," Energy, Elsevier, vol. 139(C), pages 991-1002.
    4. Souliotis, M. & Chemisana, D. & Caouris, Y.G. & Tripanagnostopoulos, Y., 2013. "Experimental study of integrated collector storage solar water heaters," Renewable Energy, Elsevier, vol. 50(C), pages 1083-1094.
    5. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    6. Souliotis, M. & Tripanagnostopoulos, Y., 2008. "Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater," Renewable Energy, Elsevier, vol. 33(5), pages 846-858.
    7. Yassen, Tadahmun A. & Mokhlif, Nassir D. & Eleiwi, Muhammad Asmail, 2019. "Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use," Renewable Energy, Elsevier, vol. 138(C), pages 852-860.
    8. Tripanagnostopoulos, Y. & Souliotis, M., 2006. "ICS solar systems with two water tanks," Renewable Energy, Elsevier, vol. 31(11), pages 1698-1717.
    9. Smyth, M. & Eames, P.C. & Norton, B., 2006. "Integrated collector storage solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 503-538, December.
    10. Azzolin, Marco & Mariani, Andrea & Moro, Lorenzo & Tolotto, Andrea & Toninelli, Paolo & Del Col, Davide, 2018. "Mathematical model of a thermosyphon integrated storage solar collector," Renewable Energy, Elsevier, vol. 128(PA), pages 400-415.
    11. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    12. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    13. Harmim, A. & Boukar, M. & Amar, M. & Haida, Aek, 2019. "Simulation and experimentation of an integrated collector storage solar water heater designed for integration into building facade," Energy, Elsevier, vol. 166(C), pages 59-71.
    14. Chuan Jiang & Lei Yu & Song Yang & Keke Li & Jun Wang & Peter D. Lund & Yaoming Zhang, 2020. "A Review of the Compound Parabolic Concentrator (CPC) with a Tubular Absorber," Energies, MDPI, vol. 13(3), pages 1-31, February.
    15. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    16. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    17. Abdullahi, B. & AL-Dadah, R.K. & Mahmoud, S. & Hood, R., 2015. "Optical and thermal performance of double receiver compound parabolic concentrator," Applied Energy, Elsevier, vol. 159(C), pages 1-10.
    18. Smyth, Mervyn & Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Mondol, Jayanta & Muhumuza, Ronald & Pugsley, Adrian & Zacharopoulos, Aggelos, 2020. "Modelling and experimental evaluation of an innovative Integrated Collector Storage Solar Water Heating (ICSSWH) prototype," Renewable Energy, Elsevier, vol. 157(C), pages 974-986.
    19. Xie, Yujie & Simbamba, Mzee Mohamed & Zhou, Jinzhi & Jiang, Fujian & Cao, Xiaoling & Sun, Liangliang & Yuan, Yanping, 2022. "Numerical investigation of the effect factors on the performance of a novel PV integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 195(C), pages 1354-1367.
    20. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:39:y:2014:i:c:p:51-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.