IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i1p210-d1035999.html
   My bibliography  Save this article

QTL Mapping for Root Traits and Their Effects on Nutrient Uptake and Yield Performance in Common Wheat ( Triticum aestivum L.)

Author

Listed:
  • Yanhua Xu

    (College of Life Sciences, Zhengzhou Normal University, Zhengzhou 450044, China
    State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China)

  • Yuzhen Yang

    (College of Life Sciences, Zhengzhou Normal University, Zhengzhou 450044, China)

  • Si Wu

    (College of Life Sciences, Zhengzhou Normal University, Zhengzhou 450044, China)

  • Dongcheng Liu

    (State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071001, China)

  • Yongzhe Ren

    (State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China)

Abstract

Wheat is one of the most important crops in the world. Mapping QTLs for root traits is essential for the selection of wheat roots desirable for the efficient acquisition of nutrients. Here, a QTL analysis for wheat root traits was performed using 142 recombinant inbred lines derived from two wheat varieties Xiaoyan 54 and Jing 411 in a soil column culture trial. The genetic map used in this study contained 470 SSR markers and covered 3438.4 cM of wheat genome. A total of 25 QTLs for root and shoot traits were detected, located at 16 marker intervals of 13 chromosomes. The percentage of phenotypic variation explained by individual QTLs varied from 6.1% to 22.0%. The QTLs regulating RDW and root distribution on chromosomes 1A, 3A, 4A, and 5B are important for root growth in both the top- and subsoils. For qRDW-1A , qRDW-3A, and qRDW-5B , the nearest markers to the QTLs were much closer than that of qRDW-4A , with the genetic distances ranging from 0.01 to 1.18 cM. Combining these three QTLs not only increased RDW and nutrient uptake, but also increased GW, SDW, and BDW under low nitrogen conditions in the field trial. Therefore, these QTLs are valuable for marker-assisted selection of wheat root traits.

Suggested Citation

  • Yanhua Xu & Yuzhen Yang & Si Wu & Dongcheng Liu & Yongzhe Ren, 2023. "QTL Mapping for Root Traits and Their Effects on Nutrient Uptake and Yield Performance in Common Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(1), pages 1-12, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:210-:d:1035999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," PLOS Biology, Public Library of Science, vol. 9(8), pages 1-9, August.
    2. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," Working Papers id:4387, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Medici & S?ren Marcus Pedersen & Giacomo Carli & Maria Rita Tagliaventi, 2019. "Environmental Benefits of Precision Agriculture Adoption," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 637-656.
    2. Simona Menardo & Giacomo Lanza & Werner Berg, 2021. "The Effect of Diet and Farm Management on N 2 O Emissions from Dairy Farms Estimated from Farm Data," Agriculture, MDPI, vol. 11(7), pages 1-19, July.
    3. Argento, F. & Liebisch, F. & Anken, T. & Walter, A. & El Benni, N., 2022. "Investigating two solutions to balance revenues and N surplus in Swiss winter wheat," Agricultural Systems, Elsevier, vol. 201(C).
    4. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de.
    5. Katarzyna Wolny-Koładka & Renata Jarosz & Michał Juda & Monika Mierzwa-Hersztek, 2022. "Distinct Changes in Abundance of Culturable Microbial Community and Respiration Activities in Response to Mineral–Organic Mixture Application in Contaminated Soil," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    6. Fazli Wahid & Shah Fahad & Subhan Danish & Muhammad Adnan & Zhen Yue & Shah Saud & Manzer H. Siddiqui & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils," Agriculture, MDPI, vol. 10(8), pages 1-14, August.
    7. Jessica Rudnick & Mark Lubell & Sat Darshan S. Khalsa & Stephanie Tatge & Liza Wood & Molly Sears & Patrick H. Brown, 2021. "A farm systems approach to the adoption of sustainable nitrogen management practices in California," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(3), pages 783-801, September.
    8. Mar Carreras-Sempere & Rafaela Caceres & Marc Viñas & Carmen Biel, 2021. "Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato ( Lycopersicum esculentum ) Production for boosting Circular and Sustainable Horticulture," Agriculture, MDPI, vol. 11(11), pages 1-15, October.
    9. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    10. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    11. Minchong Shen & Jiangang Li & Yuanhua Dong & Zhengkun Zhang & Yu Zhao & Qiyun Li & Keke Dang & Junwei Peng & Hong Liu, 2021. "The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize," Agriculture, MDPI, vol. 11(5), pages 1-18, April.
    12. Salvatore Ceccarelli, 2014. "GM Crops, Organic Agriculture and Breeding for Sustainability," Sustainability, MDPI, vol. 6(7), pages 1-14, July.
    13. Baozhi Li & Ni Zhuo & Chen Ji & Qibiao Zhu, 2022. "Influence of Smartphone-Based Digital Extension Service on Farmers’ Sustainable Agricultural Technology Adoption in China," IJERPH, MDPI, vol. 19(15), pages 1-14, August.
    14. Clark, Robert & Dahlhaus, Peter & Robinson, Nathan & Larkins, Jo-ann & Morse-McNabb, Elizabeth, 2023. "Matching the model to the available data to predict wheat, barley, or canola yield: A review of recently published models and data," Agricultural Systems, Elsevier, vol. 211(C).
    15. Luhao Jia & Mingya Wang & Shili Yang & Fan Zhang & Yidong Wang & Penghao Li & Wanqi Ma & Shaobo Sui & Tong Liu & Mingshi Wang, 2024. "Analysis of Agricultural Carbon Emissions and Carbon Sinks in the Yellow River Basin Based on LMDI and Tapio Decoupling Models," Sustainability, MDPI, vol. 16(1), pages 1-26, January.
    16. Hong Yang & Xiaoyan Shen & Li Lai & Xianjin Huang & Yan Zhou, 2017. "Spatio-Temporal Variations of Health Costs Caused by Chemical Fertilizer Utilization in China from 1990 to 2012," Sustainability, MDPI, vol. 9(9), pages 1-15, August.

    More about this item

    Keywords

    QTL; root; low nitrogen; yield; wheat;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:210-:d:1035999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.