IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p389-d543262.html
   My bibliography  Save this article

The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize

Author

Listed:
  • Minchong Shen

    (CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jiangang Li

    (CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Yuanhua Dong

    (CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Zhengkun Zhang

    (Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun 130033, China)

  • Yu Zhao

    (Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun 130033, China)

  • Qiyun Li

    (Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun 130033, China)

  • Keke Dang

    (CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Junwei Peng

    (CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Hong Liu

    (CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The bacterial community of rhizosphere soil maintains soil properties, regulates the microbiome, improves productivity, and sustains agriculture. However, the structure and function of bacterial communities have been interrupted or destroyed by unreasonable agricultural practices, especially the excessive use of chemical fertilizers. Microbial inoculants, regarded as harmless, effective, and environmentally friendly amendments, are receiving more attention. Herein, the effects of three microbial inoculants, inoculant M and two commercial inoculants (A and S), on bacterial communities of maize rhizosphere soil under three nitrogen application rates were compared. Bacterial communities treated with the inoculants were different from those of the non-inoculant control. The OTU (operational taxonomic unit) numbers and alpha diversity indices were decreased by three inoculants, except for the application of inoculant M in CF group. Beta diversity showed the different structures of bacterial communities changed by three inoculants compared with control. Furthermore, key phylotypes analyses exhibited the differences of biomarkers between different treatments visually. Overall, inoculant M had shared and unique abilities of regulating bacterial communities compared with the other two inoculants by increasing potentially beneficial bacteria and decreasing the negative. This work provides a theoretical basis for the application of microbial inoculants in sustainable agriculture.

Suggested Citation

  • Minchong Shen & Jiangang Li & Yuanhua Dong & Zhengkun Zhang & Yu Zhao & Qiyun Li & Keke Dang & Junwei Peng & Hong Liu, 2021. "The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize," Agriculture, MDPI, vol. 11(5), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:389-:d:543262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," Working Papers id:4387, eSocialSciences.
    2. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," PLOS Biology, Public Library of Science, vol. 9(8), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Medici & S?ren Marcus Pedersen & Giacomo Carli & Maria Rita Tagliaventi, 2019. "Environmental Benefits of Precision Agriculture Adoption," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 637-656.
    2. Simona Menardo & Giacomo Lanza & Werner Berg, 2021. "The Effect of Diet and Farm Management on N 2 O Emissions from Dairy Farms Estimated from Farm Data," Agriculture, MDPI, vol. 11(7), pages 1-19, July.
    3. Argento, F. & Liebisch, F. & Anken, T. & Walter, A. & El Benni, N., 2022. "Investigating two solutions to balance revenues and N surplus in Swiss winter wheat," Agricultural Systems, Elsevier, vol. 201(C).
    4. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de.
    5. Katarzyna Wolny-Koładka & Renata Jarosz & Michał Juda & Monika Mierzwa-Hersztek, 2022. "Distinct Changes in Abundance of Culturable Microbial Community and Respiration Activities in Response to Mineral–Organic Mixture Application in Contaminated Soil," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    6. Fazli Wahid & Shah Fahad & Subhan Danish & Muhammad Adnan & Zhen Yue & Shah Saud & Manzer H. Siddiqui & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils," Agriculture, MDPI, vol. 10(8), pages 1-14, August.
    7. Jessica Rudnick & Mark Lubell & Sat Darshan S. Khalsa & Stephanie Tatge & Liza Wood & Molly Sears & Patrick H. Brown, 2021. "A farm systems approach to the adoption of sustainable nitrogen management practices in California," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(3), pages 783-801, September.
    8. Mar Carreras-Sempere & Rafaela Caceres & Marc Viñas & Carmen Biel, 2021. "Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato ( Lycopersicum esculentum ) Production for boosting Circular and Sustainable Horticulture," Agriculture, MDPI, vol. 11(11), pages 1-15, October.
    9. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    10. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    11. Yanhua Xu & Yuzhen Yang & Si Wu & Dongcheng Liu & Yongzhe Ren, 2023. "QTL Mapping for Root Traits and Their Effects on Nutrient Uptake and Yield Performance in Common Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(1), pages 1-12, January.
    12. Salvatore Ceccarelli, 2014. "GM Crops, Organic Agriculture and Breeding for Sustainability," Sustainability, MDPI, vol. 6(7), pages 1-14, July.
    13. Baozhi Li & Ni Zhuo & Chen Ji & Qibiao Zhu, 2022. "Influence of Smartphone-Based Digital Extension Service on Farmers’ Sustainable Agricultural Technology Adoption in China," IJERPH, MDPI, vol. 19(15), pages 1-14, August.
    14. Clark, Robert & Dahlhaus, Peter & Robinson, Nathan & Larkins, Jo-ann & Morse-McNabb, Elizabeth, 2023. "Matching the model to the available data to predict wheat, barley, or canola yield: A review of recently published models and data," Agricultural Systems, Elsevier, vol. 211(C).
    15. Luhao Jia & Mingya Wang & Shili Yang & Fan Zhang & Yidong Wang & Penghao Li & Wanqi Ma & Shaobo Sui & Tong Liu & Mingshi Wang, 2024. "Analysis of Agricultural Carbon Emissions and Carbon Sinks in the Yellow River Basin Based on LMDI and Tapio Decoupling Models," Sustainability, MDPI, vol. 16(1), pages 1-26, January.
    16. Hong Yang & Xiaoyan Shen & Li Lai & Xianjin Huang & Yan Zhou, 2017. "Spatio-Temporal Variations of Health Costs Caused by Chemical Fertilizer Utilization in China from 1990 to 2012," Sustainability, MDPI, vol. 9(9), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:389-:d:543262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.