IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1901-d1249630.html
   My bibliography  Save this article

Perspectives on Effective Long-Term Management of Carbon Stocks in Chernozem under Future Climate Conditions

Author

Listed:
  • Ilshat Husniev

    (Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Vladimir Romanenkov

    (Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia
    Geographical Network Department, All-Russian Research Institute of Agrochemistry, 127550 Moscow, Russia)

  • Stanislav Siptits

    (A. Nikonov All-Russian Institute of Agrarian Issues and Informatics, 105064 Moscow, Russia)

  • Vera Pavlova

    (National Research Institute of Agricultural Meteorology, 249030 Obninsk, Russia)

  • Sergey Pasko

    (Federal Rostov Agricultural Research Center, Rassvet settlement, Rostov region, 346735, Russia)

  • Olga Yakimenko

    (Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Pavel Krasilnikov

    (Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia)

Abstract

Arable Chernozems with high SOC contents have the potential to be significant sources of GHGs, and climate change is likely to increase SOC losses, making the issue of carbon sequestration in this region even more important. The prospect of maintaining SOC stock or increasing it by 4‰ annually under planned management practice modifications for the period up to 2090 was evaluated using a long-term experiment on Haplic Chernozem in the Rostov Region, Russia. In this study, we used the RothC model to evaluate SOC dynamics for three treatments with mineral and organic fertilization under two adaptation scenarios vs. business-as-usual scenarios, as well as under two climate change scenarios. The correction of crop rotation and the application of organic fertilizers at high rates are essential tools for maintaining and increasing SOC stocks. These methods can maintain SOC stock at the level of 84–87 Mg∙ha −1 until the middle of the 21st century, as the first half of the century is considered to be the most promising period for the introduction of adaptation measures for the additional accumulation of SOC on Chernozems. Part of the additional accumulated SOC is expected to be lost before 2090.

Suggested Citation

  • Ilshat Husniev & Vladimir Romanenkov & Stanislav Siptits & Vera Pavlova & Sergey Pasko & Olga Yakimenko & Pavel Krasilnikov, 2023. "Perspectives on Effective Long-Term Management of Carbon Stocks in Chernozem under Future Climate Conditions," Agriculture, MDPI, vol. 13(10), pages 1-19, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1901-:d:1249630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    2. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    2. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    3. Sudarshan Chalise & Dr Athula Naranpanawa, 2016. "Climate change adaptation in agriculture: A general equilibrium analysis of land re-allocation in Nepal," EcoMod2016 9272, EcoMod.
    4. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    5. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    6. Wojciech Szewczyk & Juan Carlos Ciscar Martinez & Ignazio Mongelli & Antonio Soria Ramirez, 2018. "JRC PESETA III Project: Economic integration and spillover analysis," JRC Research Reports JRC113810, Joint Research Centre.
    7. Vladimir Ivanov & Ivan Milyaev & Alexander Konstantinov & Sergey Loiko, 2022. "Land-Use Changes on Ob River Floodplain (Western Siberia, Russia) in Context of Natural and Social Changes over Past 200 Years," Land, MDPI, vol. 11(12), pages 1-18, December.
    8. Antolin, Luís A.S. & Heinemann, Alexandre B. & Marin, Fábio R., 2021. "Impact assessment of common bean availability in Brazil under climate change scenarios," Agricultural Systems, Elsevier, vol. 191(C).
    9. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    10. Maria Belyaeva & Raushan Bokusheva, 2018. "Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach," Climatic Change, Springer, vol. 149(2), pages 205-217, July.
    11. Wallace E. Huffman & Yu Jin & Zheng Xu, 2018. "The economic impacts of technology and climate change: New evidence from U.S. corn yields," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 463-479, July.
    12. Palazzo, Amanda & Vervoort, Joost M. & Mason- D'Croz, Daniel & Rutting, Lucas & Havlik, Petr & Islam, Shahnila & Bayala, Jules & Kadi, Hame Kadi & Thornton, Philip & Zougmore, Robert, "undated". "Interpreting the Shared Socio-economic Pathways under Climate Change for the ECOWAS region through a stakeholder and multi-model process," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246970, African Association of Agricultural Economists (AAAE).
    13. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    14. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    15. Sudarshan Chalise & Athula Naranpanawa, 2023. "Potential impacts of climate change and adaptation in agriculture on poverty: the case of Nepal," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 28(4), pages 1540-1559, October.
    16. Jordan Hristov & Andrea Toreti & Ignacio Perez Dominguez & Dentener Frank & Thomas Fellmann & Christian Elleby & Andrej Ceglar & Davide Fumagalli & Stefan Niemeyer & Iacopo Cerrani & Lorenzo Panarello, 2020. "Analysis of climate change impacts on EU agriculture by 2050: JRC PESETA IV project – Task 3," JRC Research Reports JRC119632, Joint Research Centre.
    17. Smith, V. & De Pinto, A. & Robertson, R., 2018. "The Role of Risk in the Context of Climate Change, Land Use Choices and Crop Production: Evidence from Zambia," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277315, International Association of Agricultural Economists.
    18. Jacek Kulawik, 2015. "Wspólna polityka rolna Unii Europejskiej w perspektywie globalnej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 5, pages 119-143.
    19. Santiago Guerrero & Ben Henderson & Hugo Valin & Charlotte Janssens & Petr Havlik & Amanda Palazzo, 2022. "The impacts of agricultural trade and support policy reform on climate change adaptation and environmental performance: A model-based analysis," OECD Food, Agriculture and Fisheries Papers 180, OECD Publishing.
    20. Xiaowen Dai & Xin Wu & Yi Chen & Yanqiu He & Fang Wang & Yuying Liu, 2022. "Real Drivers and Spatial Characteristics of CO 2 Emissions from Animal Husbandry: A Regional Empirical Study of China," Agriculture, MDPI, vol. 12(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1901-:d:1249630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.