IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1167-d881319.html
   My bibliography  Save this article

Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China

Author

Listed:
  • Rong Tang

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Xiugui Wang

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Xudong Han

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Yihui Yan

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Shuang Huang

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Jiesheng Huang

    (State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Tao Shen

    (Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Anhui & Huaihe River Institute of Hydraulic Research, Bengbu 233000, China)

  • Youzhen Wang

    (Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Anhui & Huaihe River Institute of Hydraulic Research, Bengbu 233000, China)

  • Jia Liu

    (Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Anhui & Huaihe River Institute of Hydraulic Research, Bengbu 233000, China)

Abstract

Open-ditch controlled drainage is an important water management measure used to reduce drought and waterlogging stress in many areas in the world. Such measures are essential to promote the crop yield, make full use of rainfall resources, reduce regional drainage discharge (Q) and reduce water environmental pollution. To quantify its effects, an open-ditch controlled drainage and crop yield simulation model was developed in an area located in Northern Huaihe River Plain (NHRP), Anhui Province, China. The model was calibrated and validated. The changes in crop yield and Q were simulated under different main-ditch water-depth control schemes, field ditch layout and outlet weir height control schemes from 1991 to 2021. Compared with the current situation, the change in crop yield caused by the main ditch schemes was significantly higher than that caused by the field ditch schemes. The change in Q caused by the field ditch schemes was greater than that caused by the main ditch schemes, with values of 60% and 0.02%, respectively. Combined control schemes could further increase the crop yield and reduce the Q. The results have practical application value for ensuring good crop yields and reducing farmland drainage in the NHRP and other similar regions.

Suggested Citation

  • Rong Tang & Xiugui Wang & Xudong Han & Yihui Yan & Shuang Huang & Jiesheng Huang & Tao Shen & Youzhen Wang & Jia Liu, 2022. "Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China," Agriculture, MDPI, vol. 12(8), pages 1-25, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1167-:d:881319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    2. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    4. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    5. Quirin Schiermeier, 2018. "Droughts, heatwaves and floods: How to tell when climate change is to blame," Nature, Nature, vol. 560(7716), pages 20-22, August.
    6. Kröger, R. & Cooper, C.M. & Moore, M.T., 2008. "A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: Low-grade weirs," Agricultural Water Management, Elsevier, vol. 95(6), pages 678-684, June.
    7. David Etkin & J. Medalye & K. Higuchi, 2012. "Climate warming and natural disaster management: An exploration of the issues," Climatic Change, Springer, vol. 112(3), pages 585-599, June.
    8. Huili Chen & Zhongyao Liang & Yong Liu & Qingsong Jiang & Shuguang Xie, 2018. "Effects of drought and flood on crop production in China across 1949–2015: spatial heterogeneity analysis with Bayesian hierarchical modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 525-541, May.
    9. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Parsons, J. E. & Skaggs, R. W. & Doty, C. W., 1990. "Simulation of controlled drainage in open-ditch drainage systems," Agricultural Water Management, Elsevier, vol. 18(4), pages 301-316, November.
    11. Youssef, Mohamed A. & Abdelbaki, Ahmed M. & Negm, Lamyaa M. & Skaggs, R.Wayne & Thorp, Kelly R. & Jaynes, Dan B., 2018. "DRAINMOD-simulated performance of controlled drainage across the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 197(C), pages 54-66.
    12. Jia, Zhonghua & Luo, Wan & Fang, Shuxing & Wang, Nanjiang & Wang, Liang, 2006. "Evaluating current drainage practices and feasibility of controlled drainage in the YinNan Irrigation District, China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 20-26, July.
    13. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Yasir Abduljaleel & Ahmed Awad & Nadhir Al-Ansari & Ali Salem & Abdelazim Negm & Mohamed Elsayed Gabr, 2023. "Assessment of Subsurface Drainage Strategies Using DRAINMOD Model for Sustainable Agriculture: A Review," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    4. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Bohne, B. & Storchenegger, I.J. & Widmoser, P., 2012. "An easy to use calculation method for weir operations in controlled drainage systems," Agricultural Water Management, Elsevier, vol. 109(C), pages 46-53.
    6. Shokrana, Md Sami Bin & Ghane, Ehsan & Abdalaal, Yousef & Nejadhashemi, A. Pouyan, 2023. "Predicting the effect of weir management on the discharge of a controlled drainage system in a changing climate," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    8. Yanmei Yu & Junzeng Xu & Pingcang Zhang & Yan Meng & Yujiang Xiong, 2021. "Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields," IJERPH, MDPI, vol. 18(7), pages 1-15, March.
    9. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    10. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    11. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    13. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    14. Youngseok Song & Moojong Park, 2021. "A Study on the Development of Reduction Facilities’ Management Standards for Agricultural Drainage for Disaster Reduction," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    15. repec:ags:aaea22:335489 is not listed on IDEAS
    16. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    17. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    18. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    20. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    21. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1167-:d:881319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.