IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p407-d771081.html
   My bibliography  Save this article

No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards

Author

Listed:
  • Manuel González-Rosado

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

  • Luis Parras-Alcántara

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

  • Jesús Aguilera-Huertas

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

  • Beatriz Lozano-García

    (SUMAS Research Group, Department of Agricultural Chemistry, Soil Science and Microbiology, Faculty of Science, Agri-Food Campus of International Excellence—ceiA3, University of Cordoba, 14071 Cordoba, Spain)

Abstract

Intensive tillage (CT) application in Mediterranean olive orchards has threatened soil quality and led to soil degradation. No tillage with bare soil (NT+H) has been considered as an alternative practice to this management system; however, there are discrepancies in the literature on the results of the application of this practice. Our main objective was to assess the impact of continuous tillage and zero tillage on soil aggregate stability, SOC and SON stocks. The study was conducted in a Mediterranean rainfed olive grove under semi-arid conditions in a Calcaric Cambisol, for 16 years evaluating complete soil profiles (0–120 cm depth). In the long-term, the management practices CT1 and NT+H significantly affected aggregate particle size by reducing the percentage of macro-aggregates (>250 μm) and promoting a higher number of micro-aggregates (<250 μm). Nevertheless, NT+H affected the Bw and BC horizons with the increase in the large macroaggregates (>2000 μm) percentage. In relation to these results, the soil structural stability indices showed a significant decrease in both Mean Weight Diameter (MWD) and Geometric Mean Diameter (GMD) values with losses of more than 50% with respect to the initial period (CT0) in the first two horizons. In the long term, both in CT1 and in NT+H, higher SOC concentrations were found in deep horizons showing a C redistribution in depth and important losses in TN values—while, in CT0, macroaggregates contained the highest CPC values, after the long-term both management practices (CT1 and NT+H) affected the C dynamics and were characterised by higher C pool in the microaggregates than in the macroaggregate fractions. Therefore, long-term NT+H and CT1 showed an SOC storage deterioration and increased susceptibility to decomposition, CO 2 emissions and fertility losses. This trend i.e., decreases in SOC stocks following NT, confirms previous studies on the subject and points to nutrient balance impacts.

Suggested Citation

  • Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2022. "No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:407-:d:771081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    2. Cosmas Parwada & Johan Tol, 2019. "Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1321-1339, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijie Li & Hongguang Liu & Haichang Yang & Tangang Wang, 2023. "Effects of Deep Vertical Rotary Tillage Management Methods on Soil Quality in Saline Cotton Fields in Southern Xinjiang," Agriculture, MDPI, vol. 13(10), pages 1-13, September.
    2. Jesús Aguilera-Huertas & Luis Parras-Alcántara & Manuel González-Rosado & Beatriz Lozano-García, 2022. "What Influence Does Conventional Tillage Have on the Ability of Soils to Sequester Carbon, Stabilise It and Become Saturated in the Medium Term? A Case Study in a Traditional Rainfed Olive Grove," Sustainability, MDPI, vol. 14(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Folasade Mary OWOADE, 2021. "Effects of Land Use Types on Soil Productivity Parameters: A Case Study of Ogbomoso Agricultural Zone, Southern Guinea Savanna Ecology of Nigeria," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 5(4), pages 29-40, December.
    2. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    3. Md. Yamin Kabir & Nasrin Sultana & Md. Abdul Mannan, 2022. "Evaluation Of Nutrient Content Of Composts Made From Water Hyacinth, Kitchen Waste And Manures," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 96-101, October.
    4. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    5. Natanael Bolson & Tadeusz Patzek, 2022. "Evaluation of Rwanda’s Energy Resources," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    6. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    7. Daniel Aviles & Ingrid Wesström & Abraham Joel, 2020. "Effect of Vegetation Removal on Soil Erosion and Bank Stability in Agricultural Drainage Ditches," Land, MDPI, vol. 9(11), pages 1-14, November.
    8. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    9. Jinzhong Xu & Hao Li & XiaoBing Liu & Wei Hu & Qingnan Yang & Yanfang Hao & Huaicai Zhen & Xingyi Zhang, 2019. "Gully Erosion Induced by Snowmelt in Northeast China: A Case Study," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    10. Florence M. Masete & Lawrence Munjonji & Kingsley K. Ayisi & Moshibudi P. Mopape-Mabapa, 2022. "Cowpea Growth and Nitrogen Fixation Performance under Different Mulch Treatments," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    11. Rubaiya Binte Mostafiz & Ryozo Noguchi & Tofael Ahamed, 2021. "Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices," Land, MDPI, vol. 10(2), pages 1-26, February.
    12. Guokun Chen & Zengxiang Zhang & Qiankun Guo & Xiao Wang & Qingke Wen, 2019. "Quantitative Assessment of Soil Erosion Based on CSLE and the 2010 National Soil Erosion Survey at Regional Scale in Yunnan Province of China," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    13. Kamel Khanchoul & Mahmoud Tourki, 2020. "Assessment and Mapping of Soil Sensitivity to Erosion Using GIS in Mellegue Catchment, Northeast of Algeria," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(1), pages 8-14, February.
    14. Olatz Etxegarai-Legarreta & Valeriano Sanchez-Famoso, 2022. "The Role of Beekeeping in the Generation of Goods and Services: The Interrelation between Environmental, Socioeconomic, and Sociocultural Utilities," Agriculture, MDPI, vol. 12(4), pages 1-17, April.
    15. Melese Baye Hailu & Surendra Kumar Mishra & Sanjay K. Jain, 2023. "Evaluation of Spatial-Temporal Variation of Soil Loss and Best Conservation Measures in an East Africa Catchment," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    16. Nareth Nut & Machito Mihara & Jaehak Jeong & Bunthan Ngo & Gilbert Sigua & P.V. Vara Prasad & Manny R. Reyes, 2021. "Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    17. Anil Khokhar & Abrar Yousuf & Manmohanjit Singh & Vivek Sharma & Parminder Singh Sandhu & Gajjala Ravindra Chary, 2021. "Impact of Land Configuration and Strip-Intercropping on Runoff, Soil Loss and Crop Yields under Rainfed Conditions in the Shivalik Foothills of North-West, India," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    18. Mircea Moldovan & Ioan Tăut & Florin Alexandru Rebrean & Bartha Szilard & Iulia Diana Arion & Marcel Dîrja, 2022. "Determining the Anti-Erosion Efficiency of Forest Stands Installed on Degraded Land," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    19. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    20. Hadi Nazaripouya & Mehdi Sepehri & Abbas Atapourfard & Bagher Ghermezcheshme & Celso Augusto Guimarães Santos & Mehdi Khoshbakht & Sarita Gajbhiye Meshram & Vikas Kumar Rana & Nguyen Thi Thuy Linh & Q, 2023. "Evaluating Sediment Yield Response to Watershed Management Practices (WMP) by Employing the Concept of Sediment Connectivity," Sustainability, MDPI, vol. 15(3), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:407-:d:771081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.