IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1864-d1246415.html
   My bibliography  Save this article

Effects of Deep Vertical Rotary Tillage Management Methods on Soil Quality in Saline Cotton Fields in Southern Xinjiang

Author

Listed:
  • Zhijie Li

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
    Xinjiang Production & Construction Group Key Laboratory of Modern Water-Saving Irrigation, Shihezi 832000, China)

  • Hongguang Liu

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
    Xinjiang Production & Construction Group Key Laboratory of Modern Water-Saving Irrigation, Shihezi 832000, China)

  • Haichang Yang

    (College of Agronomy, Shihezi University, Shihezi 832000, China)

  • Tangang Wang

    (Institute of Agricultural Science of the Third Division of Xinjiang Production and Construction Corps, Tumushuk 843900, China)

Abstract

A long-term high-saline soil environment will limit the improvement of soil quality and cotton yield. Modified tillage management measures can improve soil quality, and the establishment of a soil quality evaluation system will facilitate evaluation of the soil quality and land production potential in southern Xinjiang. The objective of this study was to determine the effects of different tillage management methods on soil quality in saline cotton fields in southern Xinjiang. A three-year experiment was conducted in Tumushuke, Xinjiang, with different deep vertical rotary tillage depths (DTM20, 20 cm; DTM40, 40 cm; DTM60, 60 cm) and conventional tillage (CTM, 20 cm). The soil quality index (SQI) under different tillage management methods was established by using the full dataset (TDS) with a scoring function for eight indicators, including physicochemical properties of the soil from 0 to 60 cm, to evaluate its impact on the soil quality of the saline farmland in southern Xinjiang. The results of the study showed that deep vertical rotary tillage management can effectively optimize soil structure; reduce soil bulk density (BD), soil solution conductivity (EC), and pH; and promote the accumulation of soil organic carbon (SOC) and total nitrogen (TN) in the soil. However, the average diameter of soil water-stable aggregates (MWD) in a 0–60 cm layer becomes smaller with an increasing depth of tillage. This does not reduce crop yields but does promote soil saline leaching. In addition, the significant linear relationship ( p < 0.001) between seed cotton yield and soil quality indicated that improving soil quality was favorable for crop yield. The principal component analysis revealed BD, MWD, pH, and EC as limiting sensitive indicators for seed cotton yield, while SOC and TN were positive sensitive indicators. The soil quality index (SQI) values of DT40 and DTM60 were significantly higher than that of CTM by 11.02% and 15.27%, respectively. Overall, the results show that DTM60 is the most suitable tillage strategy to improve soil quality and seed cotton yield in this area, and this approach will provide a reliable theoretical basis for the improvement of saline farmland.

Suggested Citation

  • Zhijie Li & Hongguang Liu & Haichang Yang & Tangang Wang, 2023. "Effects of Deep Vertical Rotary Tillage Management Methods on Soil Quality in Saline Cotton Fields in Southern Xinjiang," Agriculture, MDPI, vol. 13(10), pages 1-13, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1864-:d:1246415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2022. "No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    2. Fake Shan & Dongfang Li & Jianxi Zhu & Shuo Kang & Jun Wang, 2022. "Effects of Vertical Smashing Rotary Tillage on Root Growth Characteristics and Yield of Broccoli," Agriculture, MDPI, vol. 12(7), pages 1-13, June.
    3. Sara Marinari & Emanuele Radicetti & Verdiana Petroselli & Mohamed Allam & Roberto Mancinelli, 2022. "Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato ( Solanum tuberosum L.) Crop," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
    4. Xiaoman Qiang & Jingsheng Sun & Huifeng Ning, 2022. "Impact of Subsoiling on Cultivated Horizon Construction and Grain Yield of Winter Wheat in the North China Plain," Agriculture, MDPI, vol. 12(2), pages 1-13, February.
    5. Yang, Jianjun & Tan, Weijun & Han, Jingren & Li, Feng-Min & Zhang, Feng, 2022. "Distribution pattern of rainwater in soil under vertical deep rotary tillage in dryland farmland," Agricultural Water Management, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Zhu & Shiguo Gu & Rui Jiang & Xin Zhang & Ryusuke Hatano, 2024. "Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China," Agriculture, MDPI, vol. 14(8), pages 1-25, July.
    2. Junteng Luo & Yanmin Fan & Hongqi Wu & Junhui Cheng & Rui Yang & Kai Zheng, 2024. "Quantifying the Spatial Distribution Pattern of Soil Diversity in Southern Xinjiang and Its Influencing Factors," Sustainability, MDPI, vol. 16(6), pages 1-15, March.
    3. Yanjie Fang & Weijun Tan & Huizhi Hou & Hongli Wang & Jiade Yin & Guoping Zhang & Kangning Lei & Bo Dong & Anzhen Qin, 2024. "Effects of Deep Vertical Rotary Tillage on Soil Water Use and Yield Formation of Forage Maize on Semiarid Land," Agriculture, MDPI, vol. 14(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    2. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    3. Jesús Aguilera-Huertas & Luis Parras-Alcántara & Manuel González-Rosado & Beatriz Lozano-García, 2022. "What Influence Does Conventional Tillage Have on the Ability of Soils to Sequester Carbon, Stabilise It and Become Saturated in the Medium Term? A Case Study in a Traditional Rainfed Olive Grove," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    4. Jarmila Makovníková & Stanislav Kološta & Filip Flaška & Boris Pálka, 2023. "Factors Influencing the Spatial Distribution of Regulating Agro-Ecosystem Services in Agriculture Soils: A Case Study of Slovakia," Agriculture, MDPI, vol. 13(5), pages 1-22, April.
    5. Wang Yang & Xiong Xiao & Ronghui Pan & Shengyuan Guo & Jian Yang, 2023. "Numerical Simulation of Spiral Cutter–Soil Interaction in Deep Vertical Rotary Tillage," Agriculture, MDPI, vol. 13(9), pages 1-19, September.
    6. Roberto Mancinelli & Mohamed Allam & Verdiana Petroselli & Mariam Atait & Merima Jasarevic & Alessia Catalani & Sara Marinari & Emanuele Radicetti & Aftab Jamal & Zainul Abideen & Gabriele Chilosi, 2023. "Durum Wheat Production as Affected by Soil Tillage and Fertilization Management in a Mediterranean Environment," Agriculture, MDPI, vol. 13(2), pages 1-15, February.
    7. Roberto Mancinelli & Sara Marinari & Mariam Atait & Verdiana Petroselli & Gabriele Chilosi & Merima Jasarevic & Alessia Catalani & Zainul Abideen & Morad Mirzaei & Mohamed Allam & Emanuele Radicetti, 2023. "Durum Wheat–Potato Crop Rotation, Soil Tillage, and Fertilization Source Affect Soil CO 2 Emission and C Storage in the Mediterranean Environment," Land, MDPI, vol. 12(2), pages 1-15, January.
    8. Sara Marinari & Emanuele Radicetti & Roberto Mancinelli, 2022. "Soil Quality and Health to Assess Agro-Ecosystems Services," Agriculture, MDPI, vol. 12(6), pages 1-4, May.
    9. Wenjie Li & Zhenghe Song & Minli Yang & Xiao Yang & Zhenhao Luo & Weijie Guo, 2022. "Analysis of Spatial Variability of Plough Layer Compaction by High-Power and No-Tillage Multifunction Units in Northeast China," Agriculture, MDPI, vol. 12(10), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1864-:d:1246415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.