IDEAS home Printed from https://ideas.repec.org/a/zib/zbjwbm/v4y2022i2p96-101.html
   My bibliography  Save this article

Evaluation Of Nutrient Content Of Composts Made From Water Hyacinth, Kitchen Waste And Manures

Author

Listed:
  • Md. Yamin Kabir

    (Agrotechnology Discipline, Khulna University, Khulna-9208, Bangladesh.)

  • Nasrin Sultana

    (Department of Agricultural Extension, Ministry of Agriculture, Bangladesh.)

  • Md. Abdul Mannan

    (Agrotechnology Discipline, Khulna University, Khulna-9208, Bangladesh.)

Abstract

Though composts are prepared with different agricultural and non-agricultural materials, information on preparation of compost with water hyacinth is limited. An experiment was conducted at the Germplasm Centre of Agrotechnology Discipline of Khulna University of Bangladesh during January to March 2014 to evaluate the nutrient content of composts made from water hyacinth (WH), kitchen waste (KW), cow dung (CD), farmyard manure (FYM), and poultry litter (PL). The experiment was laid out in randomized complete block design (RCBD) with 15 treatments viz. WH, KW, CD, FYM, PL, WH:KW (1:1), WH:CD (1:1), WH:FYM (1:1), WH:PL (1:1), KW:CD (1:1), KW:FYM (1:1), KW:PL (1:1), CD:FYM (1:1), CD:PL (1:1), and FYM:PL (1:1) and three replications. The prepared composts were dark brown to black with earthy smell and large-textured. Cow dung in combination with farmyard manure or poultry litter resulted highest content of total N, S, Zn, and B and farmyard manure and poultry litter had highest content of total P. Again, poultry litter with water hyacinth estimated highest total K. Combination of water hyacinth with farmyard manure had the highest Ca and Mg content. Therefore, combination of composting materials (CD, PL, FYM, WH) resulted better nutrient content of composts rather than using alone. The results suggest use of water hyacinth, an invasive aquatic weed, as a composting material that can improve our soil health.

Suggested Citation

  • Md. Yamin Kabir & Nasrin Sultana & Md. Abdul Mannan, 2022. "Evaluation Of Nutrient Content Of Composts Made From Water Hyacinth, Kitchen Waste And Manures," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(2), pages 96-101, October.
  • Handle: RePEc:zib:zbjwbm:v:4:y:2022:i:2:p:96-101
    DOI: 10.26480/jwbm.02.2022.96.101
    as

    Download full text from publisher

    File URL: https://jwbm.com.my/archives/2jwbm2022/2jwbm2022-96-101.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jwbm.02.2022.96.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel & Michael Burgess, 2013. "Soil Erosion Threatens Food Production," Agriculture, MDPI, vol. 3(3), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Folasade Mary OWOADE, 2021. "Effects of Land Use Types on Soil Productivity Parameters: A Case Study of Ogbomoso Agricultural Zone, Southern Guinea Savanna Ecology of Nigeria," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 5(4), pages 29-40, December.
    2. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    3. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    4. Katrin Martens & Sebastian Rogga & Jana Zscheischler & Bernd Pölling & Andreas Obersteg & Annette Piorr, 2022. "Classifying New Hybrid Cooperation Models for Short Food-Supply Chains—Providing a Concept for Assessing Sustainability Transformation in the Urban-Rural Nexus," Land, MDPI, vol. 11(4), pages 1-24, April.
    5. Natanael Bolson & Tadeusz Patzek, 2022. "Evaluation of Rwanda’s Energy Resources," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    6. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    7. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    8. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    9. Daniel Aviles & Ingrid Wesström & Abraham Joel, 2020. "Effect of Vegetation Removal on Soil Erosion and Bank Stability in Agricultural Drainage Ditches," Land, MDPI, vol. 9(11), pages 1-14, November.
    10. Khalid Hussain & Ayesha Ilyas & Irshad Bibi & Thomas Hilger, 2021. "Sustainable Soil Loss Management in Tropical Uplands: Impact on Maize-Chili Cropping Systems," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    11. Rachit Saxena & Sai Kranthi Vanga & Jin Wang & Valérie Orsat & Vijaya Raghavan, 2018. "Millets for Food Security in the Context of Climate Change: A Review," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    12. Nawab Khan & Ram L. Ray & Ghulam Raza Sargani & Muhammad Ihtisham & Muhammad Khayyam & Sohaib Ismail, 2021. "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    13. Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2022. "No-Tillage Does Not Always Stop the Soil Degradation in Relation to Aggregation and Soil Carbon Storage in Mediterranean Olive Orchards," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    14. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    15. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    16. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    17. Jinzhong Xu & Hao Li & XiaoBing Liu & Wei Hu & Qingnan Yang & Yanfang Hao & Huaicai Zhen & Xingyi Zhang, 2019. "Gully Erosion Induced by Snowmelt in Northeast China: A Case Study," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    18. Félicien Majoro & Umaru Garba Wali & Omar Munyaneza & François-Xavier Naramabuye, 2023. "Sustainability Analysis of Soil Erosion Control in Rwanda: Case Study of the Sebeya Watershed," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    19. Rubaiya Binte Mostafiz & Ryozo Noguchi & Tofael Ahamed, 2021. "Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices," Land, MDPI, vol. 10(2), pages 1-26, February.
    20. Million Sileshi & Reuben Kadigi & Khamaldin Mutabazi & Stefan Sieber, 2019. "Impact of soil and water conservation practices on household vulnerability to food insecurity in eastern Ethiopia: endogenous switching regression and propensity score matching approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 797-815, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbjwbm:v:4:y:2022:i:2:p:96-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jwbm.com.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.