IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p362-d763368.html
   My bibliography  Save this article

A Novel 10-Parameter Motor Efficiency Model Based on I-SA and Its Comparative Application of Energy Utilization Efficiency in Different Driving Modes for Electric Tractor

Author

Listed:
  • Zhun Cheng

    (Department of Vehicle Engineering, College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Huadong Zhou

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Zhixiong Lu

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

Abstract

To build a more accurate motor efficiency model with a strong generalization ability in order to evaluate and improve the efficiency characteristics of electric vehicles, this paper researches motor efficiency modeling based on the bench tests of two motor efficiencies with differently rated powers. This paper compares and analyzes three motor efficiency modeling methods and finds that, when the measured values in motor efficiency tests are insufficient, the bilinear interpolation method and radial basis kernel function neural networks have poor generalization abilities in full working conditions, and the precision of polynomial regression is limited. On this basis, this paper proposes a new modeling method combining correlation analysis, polynomial regression, and an improved simulated annealing (I-SA) algorithm. Using the mean and the standard deviation of the mean absolute percentage error of the 5-fold Cross Validation (CV) of 100 random tests as the evaluation indices of the precision of the motor efficiency model, and based on the motor efficiency models with verified precision, this paper makes a comparative analysis on the full vehicle efficiency of electric tractors of three types of drive in five working conditions. Research results show that the proposed novel method has a high modeling precision of motor efficiency; tractors with a dual motor coupling drive system have optimal economic performance.

Suggested Citation

  • Zhun Cheng & Huadong Zhou & Zhixiong Lu, 2022. "A Novel 10-Parameter Motor Efficiency Model Based on I-SA and Its Comparative Application of Energy Utilization Efficiency in Different Driving Modes for Electric Tractor," Agriculture, MDPI, vol. 12(3), pages 1-20, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:362-:d:763368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Qian & Zhun Cheng & Zhixiong Lu & Atila Bueno, 2021. "Bench Testing and Modeling Analysis of Optimum Shifting Point of HMCVT," Complexity, Hindawi, vol. 2021, pages 1-13, May.
    2. Zhun Cheng & Zhixiong Lu, 2018. "A Novel Efficient Feature Dimensionality Reduction Method and Its Application in Engineering," Complexity, Hindawi, vol. 2018, pages 1-14, October.
    3. Xiaomei Xu & Ping Lin, 2021. "Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    4. Ren, Guizhou & Wang, Jinzhong & Chen, Changlei & Wang, Haoran, 2021. "A variable-voltage ultra-capacitor/battery hybrid power source for extended range electric vehicle," Energy, Elsevier, vol. 231(C).
    5. Jie Tian & Jun Tong & Shi Luo, 2018. "Differential Steering Control of Four-Wheel Independent-Drive Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-18, October.
    6. Chengcheng Chang & Yanping Zheng & Yang Yu, 2020. "Estimation for Battery State of Charge Based on Temperature Effect and Fractional Extended Kalman Filter," Energies, MDPI, vol. 13(22), pages 1-24, November.
    7. Jianjun Hu & Lingling Zheng & Meixia Jia & Yi Zhang & Tao Pang, 2018. "Optimization and Model Validation of Operation Control Strategies for a Novel Dual-Motor Coupling-Propulsion Pure Electric Vehicle," Energies, MDPI, vol. 11(4), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuting Chen & Zhun Cheng & Yu Qian, 2022. "Research on Wet Clutch Switching Quality in the Shifting Stage of an Agricultural Tractor Transmission System," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    2. Cheng, Zhun, 2023. "High nonlinearity of BEV's stepped automatic transmission design objectives and its optimal solution by a novel ISA-RSA," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhun Cheng & Zhixiong Lu, 2022. "Regression-Based Correction and I-PSO-Based Optimization of HMCVT’s Speed Regulating Characteristics for Agricultural Machinery," Agriculture, MDPI, vol. 12(5), pages 1-18, April.
    2. Cheng, Zhun, 2023. "High nonlinearity of BEV's stepped automatic transmission design objectives and its optimal solution by a novel ISA-RSA," Energy, Elsevier, vol. 282(C).
    3. Zhun Cheng & Yuting Chen & Wenjie Li & Pengfei Zhou & Junhao Liu & Li Li & Wenjuan Chang & Yu Qian, 2022. "Optimization Design Based on I-GA and Simulation Test Verification of 5-Stage Hydraulic Mechanical Continuously Variable Transmission Used for Tractor," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
    4. Yuting Chen & Zhun Cheng & Yu Qian, 2022. "Research on Wet Clutch Switching Quality in the Shifting Stage of an Agricultural Tractor Transmission System," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    5. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    7. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    8. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    9. Guanghai Zhu & Jianbin Lin & Qingwu Liu & Hongwen He, 2019. "Research on the Energy-Saving Strategy of Path Planning for Electric Vehicles Considering Traffic Information," Energies, MDPI, vol. 12(19), pages 1-14, September.
    10. Yichang Zhong & Shoudao Huang & Derong Luo, 2018. "Stabilization and Speed Control of a Permanent Magnet Synchronous Motor with Dual-Rotating Rotors," Energies, MDPI, vol. 11(10), pages 1-15, October.
    11. Noemí DeCastro-García & Ángel Luis Muñoz Castañeda & David Escudero García & Miguel V. Carriegos, 2019. "Effect of the Sampling of a Dataset in the Hyperparameter Optimization Phase over the Efficiency of a Machine Learning Algorithm," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    12. Hemmatpour, Mohammad Hasan & Rezaeian Koochi, Mohammad Hossein & Dehghanian, Pooria & Dehghanian, Payman, 2022. "Voltage and energy control in distribution systems in the presence of flexible loads considering coordinated charging of electric vehicles," Energy, Elsevier, vol. 239(PA).
    13. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    14. SongSong Sun, 2020. "A new stress field intensity model and its application in component high cycle fatigue research," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-20, July.
    15. Wang, Zhenzhen & Zhou, Jun & Rizzoni, Giorgio, 2022. "A review of architectures and control strategies of dual-motor coupling powertrain systems for battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).
    17. Deping Wang & Changyang Guan & Junnian Wang & Haisheng Wang & Zhenhao Zhang & Dachang Guo & Fang Yang, 2023. "Review of Energy-Saving Technologies for Electric Vehicles, from the Perspective of Driving Energy Management," Sustainability, MDPI, vol. 15(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:362-:d:763368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.