IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p220-d741548.html
   My bibliography  Save this article

Design and Experiment of a Reciprocating Intermittent Chopping Device for Maize Straw Returning

Author

Listed:
  • Han Lin

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Jin He

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Hongwen Li

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Qingjie Wang

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Caiyun Lu

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Wenchao Yang

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Shenghai Huang

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Peng Liu

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Yongbin Chang

    (Hebei Nonghaha Agricultural Machinery Co., Ltd., Shijiazhuang 052560, China)

Abstract

Straw returning has shown great advantages in residue management and soil protection in crop planting systems. Mechanized retention of straw is the primary straw returning method, which can reduce costs and improve efficiency. It is important to increase the chopping quality in the field of straw returning, because poor chopping quality will provoke a series of problems including seeding blockage. Straw chopping pass rate (CPR) is an important indicator to measure the chopping quality. Therefore, the CPR of straw should be improved during the chopping process. This paper introduced a novel maize straw chopping device. With the ground as the support, the maize straw was chopped rapidly in the vertical direction. The key parameters of the chopping device were determined by establishing mathematical models and kinematics simulation analysis methods via ADAMS. The effects of rotational velocity, installation positions of chopping units, and the tractor forward velocity on the CPR of maize straw and soil bulk density (SBD) were examined through the Box–Behnken design method. The test factors were the rotational velocities of the chopping units (RV, 550 rpm, 650 rpm, 750 rpm), the installation distance of the two chopping units (IDTCU, 480 mm, 600 mm, 720 mm), and the velocity of the tractor (VT, 3 km/h, 4 km/h, 5 km/h). The results showed that the maximum CPR value and better value of SBD were obtained under the RV of 610 rpm, the IDTCU of 526.8 mm, and the VT of 3.96 km/h. Finally, field validation experiments were conducted under the RV of 610 rpm, the IDTCU of 550 mm, and the VT of 4 km/h. The results showed that the CPR of maize straw was 92.0%, which was superior to the requirement as stipulated in the National Standards of China (CPR ≥ 85%). In addition, in 0–50 mm and 50–100 mm soil layers, the bulk density was decreased by 25.42% and 13.24%, respectively. These results become of considerable importance for crop production in China.

Suggested Citation

  • Han Lin & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenchao Yang & Shenghai Huang & Peng Liu & Yongbin Chang, 2022. "Design and Experiment of a Reciprocating Intermittent Chopping Device for Maize Straw Returning," Agriculture, MDPI, vol. 12(2), pages 1-23, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:220-:d:741548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenguo Zhang & Quanfeng Guo & Jin He & Minyi Zhao & Zhenyu Xing & Chao Zeng & Han Lin & Quanyu Wang, 2023. "Design and Experiment of Side-Shift Stubble Avoidance System for No-Till Wheat Seeder Based on Deviation-Perception Fusion Technology," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    2. Jia Mao & Ziang Zhao & Xiangyu Li & Honggang Zhao & Ciyun Lin, 2023. "Comprehensive Benefit of Crop Straw Return Volume under Sustainable Development Management Concept in Heilongjiang, China," Sustainability, MDPI, vol. 15(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    2. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    3. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    4. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    5. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    6. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    7. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    8. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    9. Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    11. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    12. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    13. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    14. Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
    15. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    16. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    18. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    19. Anas Zyadin & Karthikeyan Natarajan & Suresh Chauhan & Harminder Singh & Md. Kamrul Hassan & Ari Pappinen & Paavo Pelkonen, 2015. "Indian Farmers’ Perceptions and Willingness to Supply Surplus Biomass to an Envisioned Biomass-Based Power Plant," Challenges, MDPI, vol. 6(1), pages 1-13, April.
    20. Muniyappan, Dineshkumar & Pereira Junior, Amaro Olimpio & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2023. "Synergistic recovery of renewable hydrocarbon resources via microwave co-pyrolysis of biomass residue and plastic waste over spent toner catalyst towards sustainable solid waste management," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:220-:d:741548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.