IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223010460.html
   My bibliography  Save this article

Synergistic recovery of renewable hydrocarbon resources via microwave co-pyrolysis of biomass residue and plastic waste over spent toner catalyst towards sustainable solid waste management

Author

Listed:
  • Muniyappan, Dineshkumar
  • Pereira Junior, Amaro Olimpio
  • M, Angkayarkan Vinayakaselvi
  • Ramanathan, Anand

Abstract

The present study unveiled the effect of operating temperature, blending ratio and catalyst addition on the product distribution during microwave co-pyrolysis of Hydnocarpus de-oiled seed cake (HDSC) and Waste electrical and electronic plastic (WEEP). In this work, a new approach of “treatment of wastes with waste” was proposed by converting spent toner powder into a low-cost catalyst. Initially, co-pyrolysis process was conducted in which the operating temperature were changed to 450, 500, and 550 °C corresponding to HDSC:WEEP mixture ratios of 100:0, 75:25, 50:50, 25:75, 0:100. The result shows that oil phase yield was significantly higher for 50:50 mixture ratio and this condition further selected for addition of catalyst. The catalytic co-pyrolysis result shows that produced oil have a density of 0.862 g/mL, high calorific value of 39.51 MJ/kg and viscosity 2.71 cSt which is comparable to commercial diesel fuel. The GC-MS study discovered that addition of catalyst could significantly suppress the oxygen and nitrogen compounds while promote the formation of aromatic hydrocarbons through Diels-Alder reaction mechanism. Finally, techno economic analysis revealed that 1000 kg/h plant demonstrated to be economically viable, with minimal production cost (USD 0.53/L compared to USD 1.15/L of commercial diesel fuel price in India).

Suggested Citation

  • Muniyappan, Dineshkumar & Pereira Junior, Amaro Olimpio & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2023. "Synergistic recovery of renewable hydrocarbon resources via microwave co-pyrolysis of biomass residue and plastic waste over spent toner catalyst towards sustainable solid waste management," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010460
    DOI: 10.1016/j.energy.2023.127652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bin & Zhao, Lijun & Xie, Xing & Lin, Dan & Xu, Huibin & Wang, Shuang & Xu, Zhixiang & Wang, Junfeng & Huang, Yong & Zhang, Shu & Hu, Xun & Liu, Dongjing, 2021. "Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature," Energy, Elsevier, vol. 215(PB).
    2. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    3. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    4. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    5. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    6. Sun, Jiaman & Luo, Juan & Lin, Junhao & Ma, Rui & Sun, Shichang & Fang, Lin & Li, Haowen, 2022. "Study of co-pyrolysis endpoint and product conversion of plastic and biomass using microwave thermogravimetric technology," Energy, Elsevier, vol. 247(C).
    7. Li, Bin & Song, Mengge & Xie, Xing & Wei, Juntao & Xu, Deliang & Ding, Kuan & Huang, Yong & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio," Energy, Elsevier, vol. 270(C).
    8. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    9. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    10. Lam, Su Shiung & Wan Mahari, Wan Adibah & Ok, Yong Sik & Peng, Wanxi & Chong, Cheng Tung & Ma, Nyuk Ling & Chase, Howard A. & Liew, Zhenling & Yusup, Suzana & Kwon, Eilhann E. & Tsang, Daniel C.W., 2019. "Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    2. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    4. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    5. Duque, João Vitor F. & Bittencourt, Flávio L.F. & Martins, Márcio F. & Debenest, Gérald, 2021. "Developing a combustion-driven reactor for waste conversion," Energy, Elsevier, vol. 237(C).
    6. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.
    7. Gözke, Gözde, 2022. "Kinetic and thermodynamic analyses based on thermogravimetric pyrolysis of watermelon seed by isoconversional and master plots methods," Renewable Energy, Elsevier, vol. 201(P1), pages 916-927.
    8. Li, Bin & Huang, Huimin & Xie, Xing & Wei, Juntao & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Volatile-char interactions during biomass pyrolysis: Effects of AAEMs removal and KOH addition in char," Renewable Energy, Elsevier, vol. 219(P1).
    9. Chen, Chunxiang & Fan, Dianzhao & Zhao, Jian & Qi, Qianhao & Huang, Xiaodong & Zeng, Tianyang & Bi, Yingxin, 2022. "Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon," Energy, Elsevier, vol. 247(C).
    10. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Kemausuor, Francis & Nygaard, Ivan & Mackenzie, Gordon, 2015. "Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model," Energy, Elsevier, vol. 93(P1), pages 672-682.
    12. Siddiqi, Hammad & Bal, Manisha & Kumari, Usha & Meikap, B.C., 2020. "In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential," Renewable Energy, Elsevier, vol. 148(C), pages 756-771.
    13. Guo, Shuaihua & Wang, Zhiwei & Chen, Gaofeng & Chen, Yan & Wu, Mengge & Zhang, Mengju & Li, Zaifeng & Yang, Shuhua & Lei, Tingzhou, 2024. "Catalytic co-pyrolysis of poplar tree and polystyrene with HZSM-5 and Fe/HZSM-5 for production of light aromatic hydrocarbons," Energy, Elsevier, vol. 298(C).
    14. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Saha, Arpita & Patil, Vivek & Adhikari, Sushil, 2021. "Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid," Energy, Elsevier, vol. 225(C).
    15. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    16. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    17. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    18. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    19. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    20. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.