IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024775.html
   My bibliography  Save this article

Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling

Author

Listed:
  • Rahmani, Ali Mohammad
  • Tyagi, Vinay Kumar
  • Kazmi, A.A.
  • Ojha, Chandra Shekhar P.

Abstract

Bio-methanation of agro-residue could fulfill the rising energy demands and curb the environmental pollution. Nevertheless, hydrolysis is the rate limiting step in anaerobic digestion (AD) of agro-waste (wheat straw, WS) due to its recalcitrant lignocellulosic composition. Hydrothermal (100–175 °C, 30–120 min) and thermal-acid (100–175 °C, 0.5–2% H2SO4 v/v) pretreatments of WS were performed to assess the pretreatment effects on WS solubilization, recalcitrant formation, lignocellulosic composition and improvement in methane yield. The 60-min hydrothermal pretreatments had an optimum chemical oxygen demand (COD) solubilization. The hydrothermal pretreatment degraded predominantly the hemicellulose by 53.4%. The furan derivatives, i.e., furfural and 5-hydroxyl-methyl-furfural (5-HMF) were formed during hydrothermal pretreatment of WS at 175 °C. The furfural and 5-HMF were generated at all studied thermal-acid pretreatment conditions owing to hemicellulose solubilization. The anaerobic co-digestion (AcoD) of hydrothermally and thermal-acid pretreated WS was performed with food waste and cow manure in a batch assay. The hydrothermally pretreated WS showed 4–14% higher methane production, while the thermal-acid pretreated WS had 29–44% less methane production than untreated WS. High concentrations of furfural, 5-HMF, total volatile fatty acids (tVFA), and NH4–N affected the methane production in digesters treating thermal-acid pretreated WS. The kinetic analysis of the assays revealed that methane production was affected by furfural, 5-HMF, temperature and acid dosing. Therefore, the calculated values through modified Gompertz and logistic models deviated from the experimental values.

Suggested Citation

  • Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024775
    DOI: 10.1016/j.energy.2023.129083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    2. Peidong, Zhang & Yanli, Yang & Yongsheng, Tian & Xutong, Yang & Yongkai, Zhang & Yonghong, Zheng & Lisheng, Wang, 2009. "Bioenergy industries development in China: Dilemma and solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2571-2579, December.
    3. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    4. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    5. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    6. V. Venkatramanan & Shachi Shah & Shiv Prasad & Anoop Singh & Ram Prasad, 2021. "Assessment of Bioenergy Generation Potential of Agricultural Crop Residues in India," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1335-1348, December.
    7. Tian, Shuang-Qi & Zhao, Ren-Yong & Chen, Zhi-Cheng, 2018. "Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 483-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinmeng Chen & Xiaotian Ma & Mengying Liang & Zhiwei Guo & Yafan Cai & Chenjie Zhu & Zhi Wang & Shilei Wang & Jingliang Xu & Hanjie Ying, 2024. "Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review," Waste, MDPI, vol. 2(4), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    3. Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
    4. Alfonso García Álvaro & César Ruiz Palomar & Israel Díaz Villalobos & Daphne Hermosilla & Raúl Muñoz & Ignacio de Godos, 2024. "Energy Integration of Thermal Pretreatment in Anaerobic Digestion of Wheat Straw," Energies, MDPI, vol. 17(9), pages 1-14, April.
    5. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    6. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    7. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    8. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    9. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    11. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    12. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    13. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    14. Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    17. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    18. Luo, Yiping & Li, Dong & Li, Ruiling & Li, Zheng & Hu, Changwei & Liu, Xiaofeng, 2020. "Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    19. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    20. Yao, Yiqing & Sheng, Hongmei & Luo, Yang & He, Mulan & Li, Xiangkai & Zhang, Hua & He, Wenliang & An, Lizhe, 2014. "Optimization of anaerobic co-digestion of Solidago canadensis L. biomass and cattle slurry," Energy, Elsevier, vol. 78(C), pages 122-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.