IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024775.html
   My bibliography  Save this article

Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling

Author

Listed:
  • Rahmani, Ali Mohammad
  • Tyagi, Vinay Kumar
  • Kazmi, A.A.
  • Ojha, Chandra Shekhar P.

Abstract

Bio-methanation of agro-residue could fulfill the rising energy demands and curb the environmental pollution. Nevertheless, hydrolysis is the rate limiting step in anaerobic digestion (AD) of agro-waste (wheat straw, WS) due to its recalcitrant lignocellulosic composition. Hydrothermal (100–175 °C, 30–120 min) and thermal-acid (100–175 °C, 0.5–2% H2SO4 v/v) pretreatments of WS were performed to assess the pretreatment effects on WS solubilization, recalcitrant formation, lignocellulosic composition and improvement in methane yield. The 60-min hydrothermal pretreatments had an optimum chemical oxygen demand (COD) solubilization. The hydrothermal pretreatment degraded predominantly the hemicellulose by 53.4%. The furan derivatives, i.e., furfural and 5-hydroxyl-methyl-furfural (5-HMF) were formed during hydrothermal pretreatment of WS at 175 °C. The furfural and 5-HMF were generated at all studied thermal-acid pretreatment conditions owing to hemicellulose solubilization. The anaerobic co-digestion (AcoD) of hydrothermally and thermal-acid pretreated WS was performed with food waste and cow manure in a batch assay. The hydrothermally pretreated WS showed 4–14% higher methane production, while the thermal-acid pretreated WS had 29–44% less methane production than untreated WS. High concentrations of furfural, 5-HMF, total volatile fatty acids (tVFA), and NH4–N affected the methane production in digesters treating thermal-acid pretreated WS. The kinetic analysis of the assays revealed that methane production was affected by furfural, 5-HMF, temperature and acid dosing. Therefore, the calculated values through modified Gompertz and logistic models deviated from the experimental values.

Suggested Citation

  • Rahmani, Ali Mohammad & Tyagi, Vinay Kumar & Kazmi, A.A. & Ojha, Chandra Shekhar P., 2023. "Hydrothermal and thermal-acid pretreatments of wheat straw: Methane yield, recalcitrant formation, process inhibition, kinetic modeling," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024775
    DOI: 10.1016/j.energy.2023.129083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    2. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    3. V. Venkatramanan & Shachi Shah & Shiv Prasad & Anoop Singh & Ram Prasad, 2021. "Assessment of Bioenergy Generation Potential of Agricultural Crop Residues in India," Circular Economy and Sustainability,, Springer.
    4. Tian, Shuang-Qi & Zhao, Ren-Yong & Chen, Zhi-Cheng, 2018. "Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 483-489.
    5. Peidong, Zhang & Yanli, Yang & Yongsheng, Tian & Xutong, Yang & Yongkai, Zhang & Yonghong, Zheng & Lisheng, Wang, 2009. "Bioenergy industries development in China: Dilemma and solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2571-2579, December.
    6. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    7. Sambusiti, C. & Monlau, F. & Ficara, E. & Carrère, H. & Malpei, F., 2013. "A comparison of different pre-treatments to increase methane production from two agricultural substrates," Applied Energy, Elsevier, vol. 104(C), pages 62-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    2. Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
    3. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Alfonso García Álvaro & César Ruiz Palomar & Israel Díaz Villalobos & Daphne Hermosilla & Raúl Muñoz & Ignacio de Godos, 2024. "Energy Integration of Thermal Pretreatment in Anaerobic Digestion of Wheat Straw," Energies, MDPI, vol. 17(9), pages 1-14, April.
    5. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    6. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    8. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    9. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    10. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    11. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    13. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    14. Yao, Yiqing & Sheng, Hongmei & Luo, Yang & He, Mulan & Li, Xiangkai & Zhang, Hua & He, Wenliang & An, Lizhe, 2014. "Optimization of anaerobic co-digestion of Solidago canadensis L. biomass and cattle slurry," Energy, Elsevier, vol. 78(C), pages 122-127.
    15. Ji, Qinghua & Jiang, Haonan & Yu, Xiaojie & Yagoub, Abu El-Gasim A. & Zhou, Cunshan & Chen, Li, 2020. "Efficient and environmentally-friendly dehydration of fructose and treatments of bagasse under the supercritical CO2 system," Renewable Energy, Elsevier, vol. 162(C), pages 1-12.
    16. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    17. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    18. Xingang, Zhao & Jieyu, Wang & Xiaomeng, Liu & Pingkuo, Liu, 2012. "China’s wind, biomass and solar power generation: What the situation tells us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6173-6182.
    19. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    20. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.