IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p209-d740377.html
   My bibliography  Save this article

Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China

Author

Listed:
  • Song Guo

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Zhigang Liu

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Zijun Zhou

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Tingqi Lu

    (Mianyang Academy of Agricultural Sciences, Mianyang 621023, China)

  • Shanghong Chen

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Mingjiang He

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Xiangzhong Zeng

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Kun Chen

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Hua Yu

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Yuxian Shangguan

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Yujiao Dong

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Fanjun Chen

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

  • Yonghong Liu

    (Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

  • Yusheng Qin

    (Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
    Monitoring and Experimental Station of Plant Nutrition and Agro-Environment for Sloping Land in South Region, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China)

Abstract

Root system architecture (RSA) plays a critical role in the acquisition of water and mineral nutrients. In order to understand the root characteristics that contribute to enhanced crop yield and N accumulation high-yielding and N efficient cultivars under N-stressed conditions. Here, grain yield, N accumulation and RSA traits of six dominant maize cultivars (CD30, ZH311, ZHg505, CD189, QY9 and RY1210) grown in the Southwestern part of China were investigated in field experiment under three different N regimes in 2019–2020; N300 (300 kg N ha −1 ), N150 (150 kg N ha −1 ) and N0 (no N supplied). Using Root Estimator for Shovelomics Traits (REST) for the quantitative analysis of maize root image obtained in the field, RSA traits including total root length (RL), root surface area (RA), root angle opening (RO), and root maximal width (RMW) were quantified in this study. The results showed that Yield, N accumulation and RSA were significantly affected by N rates, cultivars and their interactions. Grain yield, N accumulation and root weight showed a similar trend under N300 and N150 conditions compared to N0 conditions. With the input of N fertilizer, the root length, surface area, and angle increase, but root width does not increase. Under the N300 and N150 condition, RL, RA, RO and RMW increased by 17.96%, 17.74%, 18.27%, 9.22%, and 20.39%, 18.58%, 19.92%, 16.79%, respectively, compared to N0 condition. CD30, ZH505 and RY1210 have similar RO and RMW, larger than other cultivars. However, ZH505 and RY1210 have 13.22% and 19.99% longer RL, and 11.41% and 5.17% larger RA than CD30. Additionally, the grain yield of ZH505 and RY1210 is 17.57% and 13.97% higher compared with CD30. The N accumulation of ZH505 and RY1210 also shows 4.55% and 9.60% higher than CD30. Correlation analysis shows that RL, RA, RO and RMW have a significant positive correlation with grain yield while RO and RMW have a significant positive correlation with N accumulation. Linear plus plateau model analysis revealed that when the RO reaches 99.53°, and the RMW reaches 15.18 cm, the N accumulation reaches its maximum value under 0–300 kg N ha −1 conditions. Therefore, selecting maize cultivars with efficient RSA suitable for different soil N inputs can achieve higher grain yield and N use efficiency.

Suggested Citation

  • Song Guo & Zhigang Liu & Zijun Zhou & Tingqi Lu & Shanghong Chen & Mingjiang He & Xiangzhong Zeng & Kun Chen & Hua Yu & Yuxian Shangguan & Yujiao Dong & Fanjun Chen & Yonghong Liu & Yusheng Qin, 2022. "Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:209-:d:740377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    2. Ahmed M. S. Kheir & Hiba M. Alkharabsheh & Mahmoud F. Seleiman & Adel M. Al-Saif & Khalil A. Ammar & Ahmed Attia & Medhat G. Zoghdan & Mahmoud M. A. Shabana & Hesham Aboelsoud & Calogero Schillaci, 2021. "Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions," Land, MDPI, vol. 10(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    2. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    3. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    4. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    5. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    6. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    7. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    8. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    9. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    10. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    11. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    13. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    14. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    15. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    16. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    19. Maity, Shrabanti & Sinha, Anup & Kumar Rath, Mithun & Rummana Barlaskar, Ummey, 2023. "Resource Use Efficiency and Cleaner Agricultural Production: An Application of Technical Inefficiency Effects Model for Paddy Producing Zones of West Bengal," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.
    20. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:209-:d:740377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.