IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1375-d700462.html
   My bibliography  Save this article

Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions

Author

Listed:
  • Ahmed M. S. Kheir

    (International Center for Biosaline Agriculture, ICBA, Dubai 14660, United Arab Emirates
    Agricultural Research Center, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Hiba M. Alkharabsheh

    (Department of Water Resources and Environmental Management, Faculty of Agricultural Technology, Al Balqa Applied University, Salt 19117, Jordan)

  • Mahmoud F. Seleiman

    (Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Adel M. Al-Saif

    (Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Khalil A. Ammar

    (International Center for Biosaline Agriculture, ICBA, Dubai 14660, United Arab Emirates)

  • Ahmed Attia

    (International Center for Biosaline Agriculture, ICBA, Dubai 14660, United Arab Emirates)

  • Medhat G. Zoghdan

    (Agricultural Research Center, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Mahmoud M. A. Shabana

    (Agricultural Research Center, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Hesham Aboelsoud

    (Agricultural Research Center, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Calogero Schillaci

    (Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milano, Italy)

Abstract

The APSIM-Wheat and AQUACROP models were calibrated for the Sakha 95 cultivar using phenological data, grain and biomass yield, and genetic parameters based on field observation. Various treatments of planting dates, irrigation, and fertilization were applied over the two successive winter growing seasons of 2019/2020 and 2020/2021. Both models simulated anthesis, maturity dates, grain yield, and aboveground biomass accurately with high performances (coefficient of determination, index of agreement greater than 0.8, and lower values of root mean square deviation) in most cases. The calibrated models were then employed to explore wheat yield and water productivity (WP) in response to irrigation and nitrogen fertilization applications. Scenario analyses indicated that water productivity and yield of wheat ranged from 1.2–2.0 kg m –3 and 6.8–8.7 t ha –1 , respectively. Application of 0.8 from actual evapotranspiration and 120% from recommended nitrogen dose was the best-predicted scenario achieving the highest value of crop WP. Investigating the suitable option achieving the current wheat yield by farmers (7.4 t ha –1 ), models demonstrated that application of 1.4 from actual evapotranspiration with 80% of the recommended nitrogen dose was the best option to achieve this yield. At this point, predicted WP was low and recorded 1.5 kg m –3 . Quantifying wheat yield in all districts of the studied area was also predicted using both models. APSIM-Wheat and AQUACROP can be used to drive the best management strategies in terms of N fertilizer and water regime for wheat under Egyptian conditions.

Suggested Citation

  • Ahmed M. S. Kheir & Hiba M. Alkharabsheh & Mahmoud F. Seleiman & Adel M. Al-Saif & Khalil A. Ammar & Ahmed Attia & Medhat G. Zoghdan & Mahmoud M. A. Shabana & Hesham Aboelsoud & Calogero Schillaci, 2021. "Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions," Land, MDPI, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1375-:d:700462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    2. Araya, A. & Habtu, Solomon & Hadgu, Kiros Meles & Kebede, Afewerk & Dejene, Taddese, 2010. "Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)," Agricultural Water Management, Elsevier, vol. 97(11), pages 1838-1846, November.
    3. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    4. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    5. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    6. Arora, V.K. & Singh, Harbakhshinder & Singh, Bijay, 2007. "Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 22-30, December.
    7. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    8. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Ding, Zheli & Ali, Esmat F. & Elmahdy, Ahmed M. & Ragab, Khaled E. & Seleiman, Mahmoud F. & Kheir, Ahmed M.S., 2021. "Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 244(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    2. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    3. Monteleone, Beatrice & Borzí, Iolanda & Arosio, Marcello & Cesarini, Luigi & Bonaccorso, Brunella & Martina, Mario, 2023. "Modelling the response of wheat yield to stage-specific water stress in the Po Plain," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Song Guo & Zhigang Liu & Zijun Zhou & Tingqi Lu & Shanghong Chen & Mingjiang He & Xiangzhong Zeng & Kun Chen & Hua Yu & Yuxian Shangguan & Yujiao Dong & Fanjun Chen & Yonghong Liu & Yusheng Qin, 2022. "Root System Architecture Differences of Maize Cultivars Affect Yield and Nitrogen Accumulation in Southwest China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    3. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    6. Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    7. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Araya, A. & Prasad, P.V.V. & Gowda, P.H. & Afewerk, A. & Abadi, B. & Foster, A.J., 2019. "Modeling irrigation and nitrogen management of wheat in northern Ethiopia," Agricultural Water Management, Elsevier, vol. 216(C), pages 264-272.
    10. Timsina, J. & Godwin, D. & Humphreys, E. & Yadvinder-Singh & Bijay-Singh & Kukal, S.S. & Smith, D., 2008. "Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 95(9), pages 1099-1110, September.
    11. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    12. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    13. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    14. Dugan, Patrick & Dey, Madan M. & Sugunan, V.V., 2006. "Fisheries and water productivity in tropical river basins: Enhancing food security and livelihoods by managing water for fish," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 262-275, February.
    15. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    16. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    17. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    18. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    19. Molden, David & Sakthivadivel, Ramasamy & Samad, Madar & Burton, Martin, 2005. "Phases of river basin development: the need for adaptive institutions," Book Chapters,, International Water Management Institute.
    20. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1375-:d:700462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.