IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1167-d682866.html
   My bibliography  Save this article

Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang

Author

Listed:
  • Hui Cao

    (College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
    Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Hongbo Wang

    (College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China)

  • Yong Li

    (College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China)

  • Abdoul Kader Mounkaila Hamani

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

  • Nan Zhang

    (College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China)

  • Xingpeng Wang

    (College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China)

  • Yang Gao

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China)

Abstract

Crop coefficients are critical to developing irrigation scheduling and improving agricultural water management in farmland ecosystems. Interest in dwarf cultivation with high density (DCHD) for apple production increases in Aksu oasis, southern Xinjiang. The lack of micro-irrigation scheduling limits apple yield and water productivity of the DCHD-cultivated orchard. A two-year experiment with the DCHD-cultivated apple (Malus × domestica ‘Royal Gala’) orchard was conducted to determine crop coefficients and evapotranspiration (ET a ) with the SIMDualKc model, and to investigate apple yield and water productivity (WP) in response to different irrigation scheduling. The five levels of irrigation rate were designed as W1 of 13.5 mm, W2 of 18.0 mm, W3 of 22.5 mm, W4 of 27.0 mm, and W5 of 31.5 mm. The mean value of basal crop coefficient (K cb ) at the initial-, mid-, and late-season was 1.00, 1.30, and 0.89, respectively. The Kc-local (ET a /ET 0 ) range for apple orchard with DCHD was 1.11–1.20, 1.33–1.43, and 1.09–1.22 at the initial, middle, and late season, respectively. ET a of apple orchard in this study ranged between 415.55–989.71 mm, and soil evaporation accounted for 13.85–29.97% of ET a . Relationships between total irrigation amount and apple yield and WP were developed, and W3 was suggested as an optimum irrigation schedule with an average apple yield of 30,540.8 kg/ha and WP of 4.45 kg/m 3 in 2019–2020. The results have implications in developing irrigation schedules and improving water management for apple production in arid regions.

Suggested Citation

  • Hui Cao & Hongbo Wang & Yong Li & Abdoul Kader Mounkaila Hamani & Nan Zhang & Xingpeng Wang & Yang Gao, 2021. "Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1167-:d:682866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    2. Zanotelli, Damiano & Montagnani, Leonardo & Andreotti, Carlo & Tagliavini, Massimo, 2019. "Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 226(C).
    3. C. Cammalleri & G. Ciraolo & M. Minacapilli & G. Rallo, 2013. "Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4877-4895, November.
    4. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    5. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    6. Abrisqueta, I. & Abrisqueta, J.M. & Tapia, L.M. & Munguía, J.P. & Conejero, W. & Vera, J. & Ruiz-Sánchez, M.C., 2013. "Basal crop coefficients for early-season peach trees," Agricultural Water Management, Elsevier, vol. 121(C), pages 158-163.
    7. Wang, Junming & Sammis, Ted W. & Andales, Allan A. & Simmons, Luke J. & Gutschick, Vincent P. & Miller, David R., 2007. "Crop coefficients of open-canopy pecan orchards," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 253-262, March.
    8. Autovino, Dario & Rallo, Giovanni & Provenzano, Giuseppe, 2018. "Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis," Agricultural Water Management, Elsevier, vol. 203(C), pages 225-235.
    9. Mobe, N.T. & Dzikiti, S. & Zirebwa, S.F. & Midgley, S.J.E. & von Loeper, W. & Mazvimavi, D. & Ntshidi, Z. & Jovanovic, N.Z., 2020. "Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa," Agricultural Water Management, Elsevier, vol. 233(C).
    10. Munitz, Sarel & Schwartz, Amnon & Netzer, Yishai, 2019. "Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. 'Cabernet Sauvignon' vineyard," Agricultural Water Management, Elsevier, vol. 219(C), pages 86-94.
    11. Volschenk, Theresa, 2017. "Evapotranspiration and crop coefficients of Golden Delicious/M793 apple trees in the Koue Bokkeveld," Agricultural Water Management, Elsevier, vol. 194(C), pages 184-191.
    12. Conceição, Nuno & Tezza, Luca & Häusler, Melanie & Lourenço, Sónia & Pacheco, Carlos A. & Ferreira, M. Isabel, 2017. "Three years of monitoring evapotranspiration components and crop and stress coefficients in a deficit irrigated intensive olive orchard," Agricultural Water Management, Elsevier, vol. 191(C), pages 138-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongbo Wang & Hui Cao & Fuchang Jiang & Xingpeng Wang & Yang Gao, 2022. "Analysis of Soil Moisture, Temperature, and Salinity in Cotton Field under Non-Mulched Drip Irrigation in South Xinjiang," Agriculture, MDPI, vol. 12(10), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Ntshidi, Z. & Dzikiti, S. & Mazvimavi, D. & Mobe, N.T., 2021. "Contribution of understorey vegetation to evapotranspiration partitioning in apple orchards under Mediterranean climatic conditions in South Africa," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    6. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Pengrui Ai & Yingjie Ma, 2020. "Estimation of Evapotranspiration of a Jujube/Cotton Intercropping System in an Arid Area Based on the Dual Crop Coefficient Method," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    8. Mobe, N.T. & Dzikiti, S. & Zirebwa, S.F. & Midgley, S.J.E. & von Loeper, W. & Mazvimavi, D. & Ntshidi, Z. & Jovanovic, N.Z., 2020. "Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa," Agricultural Water Management, Elsevier, vol. 233(C).
    9. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    10. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    12. Ouyang, Z.-P. & Mei, X.-R. & Li, Y.-Z. & Guo, J.-X., 2013. "Measurements of water dissipation and water use efficiency at the canopy level in a peach orchard," Agricultural Water Management, Elsevier, vol. 129(C), pages 80-86.
    13. Pengrui Ai & Yingjie Ma & Ying Hai, 2023. "Comparing Simulated Jujube Evapotranspiration from P–T, Dual Kc, and S–W Models against Measurements Using a Large Weighing Lysimeter under Drip Irrigation in an Arid Area," Agriculture, MDPI, vol. 13(2), pages 1-23, February.
    14. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Giuliani, Nicola & Aguzzoni, Agnese & Penna, Daniele & Tagliavini, Massimo, 2023. "Estimating uptake and internal transport dynamics of irrigation water in apple trees using deuterium-enriched water," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Peddinti, Srinivasa Rao & Kisekka, Isaya, 2022. "Estimation of turbulent fluxes over almond orchards using high-resolution aerial imagery with one and two-source energy balance models," Agricultural Water Management, Elsevier, vol. 269(C).
    20. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1167-:d:682866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.