IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1061-d666824.html
   My bibliography  Save this article

Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China

Author

Listed:
  • Jinpeng Yang

    (Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Yingbin He

    (Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Shanjun Luo

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430070, China)

  • Xintian Ma

    (Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Zhiqiang Li

    (School of Management, Tianjin Polytechnic University, Tianjin 300387, China)

  • Zeru Lin

    (School of Management, Tianjin Polytechnic University, Tianjin 300387, China)

  • Zhiliang Zhang

    (Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, China)

Abstract

Potato is the fourth staple crop in China after wheat, maize and rice. The agro-pastoral ecotone (APE) in North China is a main region for potato production. However, potato yield has been seriously constrained by water shortages because of low precipitation and highly variable precipitation patterns during the growing season in this area. In this study, the Agricultural Production Systems Simulator (APSIM) model was used to simulate potato water-limited yield and historical years were divided into different water-temperature year types to optimize the optimal planting period (OPP) and cultivar of potato. The results showed that the potato yield varied in different water-temperature year types. Fast-developing cultivar Favorita could obtain the highest yield in most places and water-temperature year types due to its relatively short length of tuber formation stage. In this study, we suggest changing the planting date according to the water-temperature year type, which offers a new way to adapt to a highly variable climate. However, our method should be adopted carefully because we only considered climate factors; other agronomic management practices (adjusting planting density, plastic film mulch, conservation tillage etc.) also have a great effect on planting date and cultivar selection, which should be further investigated in the future.

Suggested Citation

  • Jinpeng Yang & Yingbin He & Shanjun Luo & Xintian Ma & Zhiqiang Li & Zeru Lin & Zhiliang Zhang, 2021. "Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China," Agriculture, MDPI, vol. 11(11), pages 1-13, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1061-:d:666824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harms, T.E. & Konschuh, M.N., 2010. "Water savings in irrigated potato production by varying hill-furrow or bed-furrow configuration," Agricultural Water Management, Elsevier, vol. 97(9), pages 1399-1404, September.
    2. Qi Hu & Ning Yang & Feifei Pan & Xuebiao Pan & Xiaoxiao Wang & Pengyu Yang, 2017. "Adjusting Sowing Dates Improved Potato Adaptation to Climate Change in Semiarid Region, China," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    3. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian Liu, 2022. "Analysis of Crop Sustainability Production Potential in Northwest China: Water Resources Perspective," Agriculture, MDPI, vol. 12(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nesterenko Sergey & Vyatkin Konstantin, 2017. "The study of land management and geographic information support of municipal building in Ukraine," Technology audit and production reserves, 1(33) 2017, Socionet;Technology audit and production reserves, vol. 1(4(33)), pages 24-28.
    2. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    4. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    5. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    6. Getnet, Kindie & MacAlister, Charlotte, 2012. "Integrated innovations and recommendation domains: Paradigm for developing, scaling-out, and targeting rainwater management innovations," Ecological Economics, Elsevier, vol. 76(C), pages 34-41.
    7. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    8. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    9. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    10. Datta, Nirupam, 2015. "Evaluating Impacts of Watershed Development Program on Agricultural Productivity, Income, and Livelihood in Bhalki Watershed of Bardhaman District, West Bengal," World Development, Elsevier, vol. 66(C), pages 443-456.
    11. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    12. Dereje Mengistie & Desale Kidane, 2016. "Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia," Agriculture, MDPI, vol. 6(3), pages 1-22, June.
    13. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    14. Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
    16. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    17. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    18. Birhanu Zemadim Birhanu & Kalifa Traoré & Murali Krishna Gumma & Félix Badolo & Ramadjita Tabo & Anthony Michael Whitbread, 2019. "A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2459-2485, October.
    19. Yingying Xing & Xiaoli Niu & Ning Wang & Wenting Jiang & Yaguang Gao & Xiukang Wang, 2020. "The Correlation between Soil Nutrient and Potato Quality in Loess Plateau of China Based on PLSR," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    20. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1061-:d:666824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.