IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics0378377420313573.html
   My bibliography  Save this article

Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau

Author

Listed:
  • Wang, Huabing
  • Xie, Tianyun
  • Yu, Xiaohong
  • Zhang, Chi

Abstract

As different hydrological phenomena caused by different climates have a far-reaching impact on agricultural sustainable development, analysis of the impact of soil erosion on agricultural sustainable planting under different climates was conducted. The SWAT model was used to quantitatively analyze the regional soil and water loss affected by different climate changes. In addition, the evaluation and prediction model of agricultural sustainable planting was constructed with EPIC software, in order to achieve the agricultural sustainable planting by selecting appropriate crops. Based on the analysis of Yulin City in Shaanxi Province, the results showed that: with fixed precipitation, the increase and decrease of 5°C temperature would lead to a change rate of soil loss of -27.78 % and 9.52 % respectively; with fixed temperature, the increase and decrease of +20 % precipitation would lead to a change rate of soil loss of 21.43 % and - 38.10 % respectively. The situation of soil erosion under the slope environment was more serious, and the yield of grain and farming income decreased. It is necessary to choose reasonable planting methods and environmental control policies to reduce the impact of soil erosion on agricultural sustainable planting. Currently, conservation tillage is adopted as the control measure in Yulin. The results of this paper indicated that slope change and crop rotation should be adopted simultaneously to realize the coordination of soil and water conservation and agricultural benefits under the climate change background.

Suggested Citation

  • Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420313573
    DOI: 10.1016/j.agwat.2020.106462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420313573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    2. Cerdà, A. & Rodrigo-Comino, J. & Giménez-Morera, A. & Novara, A. & Pulido, M. & Kapović-Solomun, M. & Keesstra, S.D., 2018. "Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations," Land Use Policy, Elsevier, vol. 75(C), pages 734-745.
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    4. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.
    5. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    6. Brian J. Wienhold & Merle F. Vigil & John R. Hendrickson & Justin D. Derner, 2018. "Vulnerability of crops and croplands in the US Northern Plains to predicted climate change," Climatic Change, Springer, vol. 146(1), pages 219-230, January.
    7. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    8. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    9. Bradford L. Barham & Jeremy D. Foltz & Douglas Jackson-Smith & Sunung Moon, 2004. "The Dynamics of Agricultural Biotechnology Adoption: Lessons from series rBST Use in Wisconsin, 1994–2001," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 61-72.
    10. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    2. Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Jesús Barrena-González & Jesús Rodrigo-Comino & Yeboah Gyasi-Agyei & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates," Land, MDPI, vol. 9(3), pages 1-17, March.
    4. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    5. Mulat Guadie & Eyayu Molla & Mulatie Mekonnen & Artemi Cerdà, 2020. "Effects of Soil Bund and Stone-Faced Soil Bund on Soil Physicochemical Properties and Crop Yield Under Rain-Fed Conditions of Northwest Ethiopia," Land, MDPI, vol. 9(1), pages 1-15, January.
    6. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    7. Blackmore, Ivy & Iannotti, Lora & Rivera, Claudia & Waters, William F. & Lesorogol, Carolyn, 2021. "Land degradation and the link to increased livelihood vulnerabilities among indigenous populations in the Andes of Ecuador," Land Use Policy, Elsevier, vol. 107(C).
    8. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    9. Haytham M. Salem & Adil A. Meselhy, 2021. "A portable rainfall simulator to evaluate the factors affecting soil erosion in the northwestern coastal zone of Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2937-2955, February.
    10. Tugrul Yakupoglu & Recep Gundogan & Turgay Dindaroglu & Kadir Kusvuran & Veysel Gokmen & Jesus Rodrigo-Comino & Yeboah Gyasi-Agyei & Artemi Cerdà, 2021. "Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    11. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    12. Yang Yu & Jesús Rodrigo-Comino, 2021. "Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach," Land, MDPI, vol. 10(2), pages 1-15, February.
    13. Saskia Keesstra & Tamara Metze & Linda Ofori & Marleen Buizer & Saskia Visser, 2022. "What Does the Circular Household of the Future Look Like? An Expert-Based Exploration," Land, MDPI, vol. 11(7), pages 1-15, July.
    14. Li, Chunxia & Li, Youjun & Fu, Guozhan & Huang, Ming & Ma, Chao & Wang, Hezheng & Zhang, Jun, 2020. "Cultivation and mulching materials strategies to enhance soil water status, net ecosystem and crop water productivity of winter wheat in semi-humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).
    16. Xingliang Ma & Guanming Shi, 2015. "A dynamic adoption model with Bayesian learning: an application to U.S. soybean farmers," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 25-38, January.
    17. Mekonnen, Mulatie & Abeje, Tadissual & Addisu, Solomon, 2021. "Integrated watershed management on soil quality, crop productivity and climate change adaptation, dry highland of Northeast Ethiopia," Agricultural Systems, Elsevier, vol. 186(C).
    18. Tadros, Maher J. & Al-Mefleh, Naji K. & Othman, Yahia A. & Al-Assaf, Amani, 2021. "Water harvesting techniques for improving soil water content, and morpho-physiology of pistachio trees under rainfed conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system," Agricultural Water Management, Elsevier, vol. 165(C), pages 82-96.
    20. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420313573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.