IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v286y2023ics037837742300255x.html
   My bibliography  Save this article

Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya

Author

Listed:
  • Ndung’u, M.
  • Mugwe, J.N.
  • Mucheru-Muna, M.W.
  • Ngetich, F.K.
  • Mairura, F.S.
  • Mugendi, D.N.

Abstract

Deficits in soil moisture and low soil fertility are the major constraints to smallholder farming systems in the SSA (sub-Saharan Africa) region. This study evaluated the effects of tied ridging and selected soil fertility inputs on; soil water content at different depths, maize yields, and economic returns. The treatments were: Tithonia diversifolia + inorganic fertilizer, manure + inorganic fertilizer, inorganic fertilizer, and control with or without tied ridging as the soil water conservation factor. Data were subjected to analysis of variance, and the means were separated using LSD at p ≤ 0.05. Treatments with Tithonia diversifolia or manure combined with inorganic fertilizer with or without tied ridging consistently affected soil water content positively. The effect of tied ridging on soil water content was greater during the short rain season compared to the long rains. In addition, there was evidence that tied ridging and organic soil inputs resulted in greater soil moisture conservation during the critical silking and tasselling maize phenological stages during the short rain season. Treatments had significant effects on grain and stover yields during the long rain 2016 season (p < 0.0001 and p = 0.0477, respectively) and the short rain 2016 season (p < 0.0001 and p = 0.0035, respectively). The highest (4.87 Mg ha−1) maize grain yield was recorded in Tithonia diversifolia plus inorganic fertilizer under tied ridging in the long rain 2016 season, while manure + inorganic fertilizer without tied ridging gave the highest yields (1.27 Mg ha−1) in the short rain 2016 season. The highest net benefits of US$ 1229.90 ha−1 and US$ 171.57 ha−1 were recorded under Tithonia diversifolia plus inorganic fertilizer with tied ridging during the long and short rain seasons, respectively. Overall, the best-performing treatments in yields and profitability were those that combined organic and inorganic fertilizers, regardless of the presence or absence of tied ridging. Climate-smart agricultural strategies combining tied ridges and organic inputs should be an integral component of farmer management if losses related to soil fertility and water stress are to be minimized under erratic rainfall regimes in the semiarid farming systems of the SSA region.

Suggested Citation

  • Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s037837742300255x
    DOI: 10.1016/j.agwat.2023.108390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742300255X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiyo, K. A. & Kasomekera, Z. M. & Feyen, J., 2000. "Effect of tied-ridging on soil water status of a maize crop under Malawi conditions," Agricultural Water Management, Elsevier, vol. 45(2), pages 101-125, July.
    2. Araya, A. & Stroosnijder, L., 2010. "Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 97(6), pages 841-847, June.
    3. Gil Gram & Dries Roobroeck & Pieter Pypers & Johan Six & Roel Merckx & Bernard Vanlauwe, 2020. "Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-30, September.
    4. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    5. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolka, Kebede & Mulder, Jan & Biazin, Birhanu, 2018. "Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review," Agricultural Water Management, Elsevier, vol. 207(C), pages 67-79.
    2. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    3. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    4. Dong-Gill Kim & Elisa Grieco & Antonio Bombelli & Jonathan E. Hickman & Alberto Sanz-Cobena, 2021. "Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 457-476, April.
    5. Kiboi, M.N. & Ngetich, K.F. & Fliessbach, A. & Muriuki, A. & Mugendi, D.N., 2019. "Soil fertility inputs and tillage influence on maize crop performance and soil water content in the Central Highlands of Kenya," Agricultural Water Management, Elsevier, vol. 217(C), pages 316-331.
    6. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    7. Nesterenko Sergey & Vyatkin Konstantin, 2017. "The study of land management and geographic information support of municipal building in Ukraine," Technology audit and production reserves, 1(33) 2017, Socionet;Technology audit and production reserves, vol. 1(4(33)), pages 24-28.
    8. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    9. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    11. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    12. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    13. Datta, Nirupam, 2015. "Evaluating Impacts of Watershed Development Program on Agricultural Productivity, Income, and Livelihood in Bhalki Watershed of Bardhaman District, West Bengal," World Development, Elsevier, vol. 66(C), pages 443-456.
    14. Dereje Mengistie & Desale Kidane, 2016. "Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia," Agriculture, MDPI, vol. 6(3), pages 1-22, June.
    15. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    16. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    17. Dai, Cuiting & Liu, Yaojun & Wang, Tianwei & Li, Zhaoxia & Zhou, Yiwen, 2018. "Exploring optimal measures to reduce soil erosion and nutrient losses in southern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 41-48.
    18. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
    19. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    20. Wang, Huabing & Xie, Tianyun & Yu, Xiaohong & Zhang, Chi, 2021. "Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau," Agricultural Water Management, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s037837742300255x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.