A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction for Enhanced Agricultural Crop Yield Prediction Modeling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bommert, Andrea & Sun, Xudong & Bischl, Bernd & Rahnenführer, Jörg & Lang, Michel, 2020. "Benchmark for filter methods for feature selection in high-dimensional classification data," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- R. Srinivasan & C.P. Lohith, 2017. "Strategic Marketing and Innovation for Indian MSMEs," India Studies in Business and Economics, Springer, number 978-981-10-3590-6, January.
- Saikai, Yuji & Patel, Vivak & Mitchell, Paul, 2020. "Machine learning for optimizing complex site-specific management," 2020 Conference (64th), February 12-14, 2020, Perth, Western Australia 305238, Australian Agricultural and Resource Economics Society.
- Torres, Alfonso F. & Walker, Wynn R. & McKee, Mac, 2011. "Forecasting daily potential evapotranspiration using machine learning and limited climatic data," Agricultural Water Management, Elsevier, vol. 98(4), pages 553-562, February.
- Saeid Hamzeh & Marzieh Mokarram & Azadeh Haratian & Harm Bartholomeus & Arend Ligtenberg & Arnold K. Bregt, 2016. "Feature Selection as a Time and Cost-Saving Approach for Land Suitability Classification (Case Study of Shavur Plain, Iran)," Agriculture, MDPI, vol. 6(4), pages 1-13, October.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Priya Brata Bhoi & Veeresh S. Wali & Deepak Kumar Swain & Kalpana Sharma & Akash Kumar Bhoi & Manlio Bacco & Paolo Barsocchi, 2021. "Input Use Efficiency Management for Paddy Production Systems in India: A Machine Learning Approach," Agriculture, MDPI, vol. 11(9), pages 1-27, August.
- Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fatemeh Moodi & Amir Jahangard-Rafsanjani & Sajad Zarifzadeh, 2023. "Feature selection and regression methods for stock price prediction using technical indicators," Papers 2310.09903, arXiv.org, revised Nov 2023.
- Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
- Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Manuel Oviedo-de la Fuente & Carlos Cabo & Celestino Ordóñez & Javier Roca-Pardiñas, 2021. "A Distance Correlation Approach for Optimum Multiscale Selection in 3D Point Cloud Classification," Mathematics, MDPI, vol. 9(12), pages 1-19, June.
- Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
- Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
- Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
- Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
- Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
- Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
- Eike Emrich & Christian Pierdzioch, 2016.
"Volunteering, Match Quality, and Internet Use,"
Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
- Emrich, Eike & Pierdzioch, Christian, 2015. "Volunteering, match quality, and internet use," Working Papers of the European Institute for Socioeconomics 15, European Institute for Socioeconomics (EIS), Saarbrücken.
- Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
- Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
- Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
- Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
More about this item
Keywords
correlation filter; crop yield prediction; hybrid feature extraction; machine learning; recursive feature elimination wrapper; precision agriculture;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:400-:d:412144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.