IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i12p614-d459001.html
   My bibliography  Save this article

Green Food Development in China: Experiences and Challenges

Author

Listed:
  • Jiuliang Xu

    (Department of Plant Nutrition, The Key Plant-Soil Interaction Laboratory, Ministry of Education, China Agricultural University, Beijing 100193, China
    National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
    Chinese Academy of Green Food Development, Beijing 100193, China)

  • Zhihua Zhang

    (China Green Food Development Center, Beijing 100081, China)

  • Xian Zhang

    (China Green Food Development Center, Beijing 100081, China)

  • Muhammad Ishfaq

    (Department of Plant Nutrition, The Key Plant-Soil Interaction Laboratory, Ministry of Education, China Agricultural University, Beijing 100193, China)

  • Jiahui Zhong

    (Department of Plant Nutrition, The Key Plant-Soil Interaction Laboratory, Ministry of Education, China Agricultural University, Beijing 100193, China)

  • Wei Li

    (Fujian Key Laboratory of Agro-Product Quality and Safety, Fuzhou 350003, China)

  • Fusuo Zhang

    (Department of Plant Nutrition, The Key Plant-Soil Interaction Laboratory, Ministry of Education, China Agricultural University, Beijing 100193, China
    National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
    Chinese Academy of Green Food Development, Beijing 100193, China)

  • Xuexian Li

    (Department of Plant Nutrition, The Key Plant-Soil Interaction Laboratory, Ministry of Education, China Agricultural University, Beijing 100193, China
    National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
    Chinese Academy of Green Food Development, Beijing 100193, China)

Abstract

China feeds approximately 22% of the global population with only 7% of the global arable land because of its surprising success in intensive agriculture. This outstanding achievement is partially overshadowed by agriculture-related large-scale environmental pollution across the nation. To ensure nutrition security and environmental sustainability, China proposed the Green Food Strategy in the 1990s and set up a specialized management agency, the China Green Food Development Center, with a monitoring network for policy and standard creation, brand authorization, and product inspection. Following these 140 environmental and operational standards, 15,984 green food companies provided 36,345 kinds of products in 2019. The cultivation area and annual domestic sales (CNY 465.7 billion) of green food accounted for 8.2% of the total farmland area and 9.7% of the gross domestic product (GDP) from agriculture in China. Herein, we systemically reviewed the regulation, standards, and authorization system of green food and its current advances in China, and then outlined its environmental benefits, challenges, and probable strategies for future optimization and upscaling. The rapid development of the green food industry in China suggests an applicable triple-win strategy for protecting the environment, promoting agroeconomic development, and improving human nutrition and health in other developing countries or regions.

Suggested Citation

  • Jiuliang Xu & Zhihua Zhang & Xian Zhang & Muhammad Ishfaq & Jiahui Zhong & Wei Li & Fusuo Zhang & Xuexian Li, 2020. "Green Food Development in China: Experiences and Challenges," Agriculture, MDPI, vol. 10(12), pages 1-15, December.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:614-:d:459001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/12/614/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/12/614/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oleg Bazaluk & Olha Yatsenko & Oleksandr Zakharchuk & Anna Ovcharenko & Olga Khrystenko & Vitalii Nitsenko, 2020. "Dynamic Development of the Global Organic Food Market and Opportunities for Ukraine," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    2. Fusuo Zhang & Xinping Chen & Peter Vitousek, 2013. "An experiment for the world," Nature, Nature, vol. 497(7447), pages 33-35, May.
    3. Liu, Li-qun & Liu, Chun-xia & Wang, Jing-si, 2013. "Deliberating on renewable and sustainable energy policies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 191-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiale Yan & Zhengyuan Tang & Yinuo Guan & Mingjian Xie & Yongjian Huang, 2023. "Analysis of Measurement, Regional Differences, Convergence and Dynamic Evolutionary Trends of the Green Production Level in Chinese Agriculture," Agriculture, MDPI, vol. 13(10), pages 1-18, October.
    2. Jiaxing Pang & Ningfei Wang & Xue Li & Xiang Li & Huiyu Wang & Xingpeng Chen, 2021. "Impact of Economic Development Level and Agricultural Water Use on Agricultural Production Scale in China," IJERPH, MDPI, vol. 18(17), pages 1-12, August.
    3. Yameng Wang & Apurbo Sarkar & Linyan Ma & Qian Wu & Feng Wei, 2021. "Measurement of Investment Potential and Spatial Distribution of Arable Land among Countries within the “Belt and Road Initiative”," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    4. Li, Dalei & Gao, Jianzhong, 2021. "Impact of Large-Scale Land Operation on the Development of Regional Public Brands of Agricultural Products," 2021 ASAE 10th International Conference (Virtual), January 11-13, Beijing, China 329397, Asian Society of Agricultural Economists (ASAE).
    5. Kang, Shijia & Frick, Fabian & Ait Sidhoum, Amer & Sauer, Johannes & Zheng, Shaofeng, 2023. "Does food quality certification improve eco-efficiency? Empirical evidence from Chinese vegetable production," Food Policy, Elsevier, vol. 121(C).
    6. Xueyao Zhang & Hong Chen, 2021. "Green Agricultural Development Based on Information Communication Technology and the Panel Space Measurement Model," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    7. Shuai Qin & Zheying Han & Hong Chen & Haokun Wang & Cheng Guo, 2022. "High-Quality Development of Chinese Agriculture under Factor Misallocation," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    8. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    9. Zhongming Li & Wei Fu & Mingcan Luo & Jiancheng Chen, 2022. "The Coupling Coordination between the Competitiveness Level and Land Use Efficiency of Green Food Industry in China," Land, MDPI, vol. 11(12), pages 1-22, November.
    10. Litao Feng & Zhuo Li & Zhihui Zhao, 2021. "Extreme Climate Shocks and Green Agricultural Development: Evidence from the 2008 Snow Disaster in China," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    11. Stanley Y. B. Huang & Kuei-Hsien Chen & Yue-Shi Lee, 2021. "How to Promote Medium-Sized Farms to Adopt Environmental Strategy to Achieve Sustainable Production during the COVID-19 Pandemic?," Agriculture, MDPI, vol. 11(11), pages 1-8, October.
    12. Yanling Chen & Weiwei Fu & Jingyun Wang, 2022. "Evaluation and Influencing Factors of China’s Agricultural Productivity from the Perspective of Environmental Constraints," Sustainability, MDPI, vol. 14(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    2. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    3. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    4. Dan Pan, 2014. "The Impact of Agricultural Extension on Farmer Nutrient Management Behavior in Chinese Rice Production: A Household-Level Analysis," Sustainability, MDPI, vol. 6(10), pages 1-22, September.
    5. Skydan, Oleg & Nykolyuk, Olga & Chaikin, Oleksandr & Shukalovych, Vasyl, 2021. "Concept of fractal organization of organic business systems," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 7(2), June.
    6. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    7. Ying Liu & Chenggang Wang & Zeng Tang & Zhibiao Nan, 2017. "Farmland Rental and Productivity of Wheat and Maize: An Empirical Study in Gansu, China," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    8. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    10. Aixia Xu & Lingling Li & Junhong Xie & Xingzheng Wang & Jeffrey A. Coulter & Chang Liu & Linlin Wang, 2020. "Effect of Long-Term Nitrogen Addition on Wheat Yield, Nitrogen Use Efficiency, and Residual Soil Nitrate in a Semiarid Area of the Loess Plateau of China," Sustainability, MDPI, vol. 12(5), pages 1-17, February.
    11. Skorokhod, Iryna & Skrypchuk, Petro & Shpak, Halyna & Chemerys, Vasyl & Yakubiv, Roman, 2022. "Assessment of efficiency of the organic production development in Western Polissia regions," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 8(4), December.
    12. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    13. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    14. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    15. Kristia Kristia & Sándor Kovács & Zoltán Bács & Mohammad Fazle Rabbi, 2023. "A Bibliometric Analysis of Sustainable Food Consumption: Historical Evolution, Dominant Topics and Trends," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    16. Koliadenko, Svitlana & Andreichenko, Andrii & Galperina, Liubov & Minenko, Sofiia & Kovylina, Maria, 2020. "Analysis and forecasting of Ukrainian agrarian exports to the EU countries," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 6(3), September.
    17. Liu, Hao & Su, Guandong & Okere, Chinedu J. & Li, Guozhang & Wang, Xiangchun & Cai, Yuzhe & Wu, Tong & Zheng, Lihui, 2022. "Working fluid-induced formation damage evaluation for commingled production of multi-layer natural gas reservoirs with flow rate method," Energy, Elsevier, vol. 239(PB).
    18. Liu, Liqun & Meng, Xiaoli & Liu, Chunxia, 2016. "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1500-1507.
    19. Li, Mingquan & Patiño-Echeverri, Dalia & Zhang, Junfeng (Jim), 2019. "Policies to promote energy efficiency and air emissions reductions in China's electric power generation sector during the 11th and 12th five-year plan periods: Achievements, remaining challenges, and ," Energy Policy, Elsevier, vol. 125(C), pages 429-444.
    20. Maolin Li & Yongxun Zhang & Ming Xu & Lulu He & Longteng Liu & Qisheng Tang, 2019. "China Eco-Wisdom: A Review of Sustainability of Agricultural Heritage Systems on Aquatic-Ecological Conservation," Sustainability, MDPI, vol. 12(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:614-:d:459001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.