IDEAS home Printed from https://ideas.repec.org/a/gam/jadmsc/v14y2024i8p186-d1459775.html
   My bibliography  Save this article

Enhancing Stakeholder Value: Managerial Activities in the Value Creation Process for Suppliers and Buyer—Evidence from Slovak Enterprises

Author

Listed:
  • Dana Kusnirova

    (Department of Macro and Microeconomics, Faculty of Management Science and Informatics, University of Zilina, 010 26 Zilina, Slovakia)

  • Maria Durisova

    (Department of Macro and Microeconomics, Faculty of Management Science and Informatics, University of Zilina, 010 26 Zilina, Slovakia)

  • Oliver Bubeliny

    (Department of Management Theories, Faculty of Management Science and Informatics, University of Zilina, 010 26 Zilina, Slovakia)

Abstract

The paper aims to identify, characterize, and determine the method of managerial activities in the value creation process for buyers and suppliers with the subsequent determination of their significance. The study employs a hybrid methodology combining theoretical and empirical approaches. The theoretical framework was developed through a systematic review of contemporary literature, leading to the creation of a procedural model for effective value creation in B2B environments. This model outlines key managerial activities, including the diversification of suppliers and buyers, securing communication channels, value identification, determination of value creation variants, and feedback evaluation. To empirically validate this framework, interviews were conducted with managers from twenty Slovak manufacturing enterprises. These interviews aimed to assess the alignment between the theoretical model and actual managerial practices and to identify any discrepancies or areas for improvement. The findings indicate that while managers engage in several key activities intuitively, there are notable variations in the application of specific practices. The study contributes to the literature by bridging theoretical concepts with practical implementation. It offers actionable recommendations for enhancing value creation processes, highlighting the importance of aligning managerial practices with theoretical best practices to achieve better stakeholder satisfaction and business success.

Suggested Citation

  • Dana Kusnirova & Maria Durisova & Oliver Bubeliny, 2024. "Enhancing Stakeholder Value: Managerial Activities in the Value Creation Process for Suppliers and Buyer—Evidence from Slovak Enterprises," Administrative Sciences, MDPI, vol. 14(8), pages 1-25, August.
  • Handle: RePEc:gam:jadmsc:v:14:y:2024:i:8:p:186-:d:1459775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2076-3387/14/8/186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2076-3387/14/8/186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    2. Dana Kušnírová & Mária Ďurišová & Eva Malichová, 2023. "Indicators of Value Creation and Their Perception by Suppliers in Slovakia," Administrative Sciences, MDPI, vol. 13(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
    2. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    3. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    4. Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
    5. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    6. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    7. repec:iim:iimawp:14638 is not listed on IDEAS
    8. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    9. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    10. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    11. Vairetti, Carla & Aránguiz, Ignacio & Maldonado, Sebastián & Karmy, Juan Pablo & Leal, Alonso, 2024. "Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1108-1118.
    12. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    13. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    14. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    15. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    16. Sobrie, Léon & Verschelde, Marijn & Hennebel, Veerle & Roets, Bart, 2023. "Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1201-1217.
    17. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    18. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    19. Liu, Yezheng & Qian, Yang & Jiang, Yuanchun & Shang, Jennifer, 2020. "Using favorite data to analyze asymmetric competition: Machine learning models," European Journal of Operational Research, Elsevier, vol. 287(2), pages 600-615.
    20. Shao-Bo Lin & Shaojie Tang & Yao Wang & Di Wang, 2022. "Toward Efficient Ensemble Learning with Structure Constraints: Convergent Algorithms and Applications," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3096-3116, November.
    21. Ameling, Justus & Gust, Gunther, 2024. "Automated feeder routing for underground electricity distribution networks based on aerial images," European Journal of Operational Research, Elsevier, vol. 318(2), pages 629-641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jadmsc:v:14:y:2024:i:8:p:186-:d:1459775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.