IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxiiiy2020ispecial2p99-109.html
   My bibliography  Save this article

Modal Choice Preferences in Inland Container Transport in Poland

Author

Listed:
  • Damian Bonk
  • Sylwia Kowalska

Abstract

Purpose: As part of this paper, three research goals were set. The first one concerns the identification of factors influencing the modal choice to carry intermodal transport units by inland transport. The second goal is related to determining what conditions would have to exist for a given operator to agree to shift the cargo from road to rail transport as part of the modal shift concept. The third goal is to specify the influence of COVID-19 on the modal choice. Design/Methodology/Approach: Earlier studies have confirmed the difficulty in determining modal choice preferences due to their complexity. The complexity of the problem makes the use of quantitative methods ineffective. On the basis of the qualitative research conducted with the use of the in-depth semi structured interview, the authors identified the factors influencing the modal choice, at the same time defining the conditions that would have to be met in order to encourage cargo operators to make greater use of rail transport. Findings: The conducted research study indicated differences in the factors determining the choice of transport modes, mainly depending on the size of the surveyed company. The above-mentioned factors in relation to the entire study group included the time and cost of transport, as well as the availability and quality of transport infrastructure. The surveyed enterprises agreed that the factors that would have to occur to increase the use of rail transport included: increasing the number of reloading points at railway connections and increasing the timeliness of transport. Practical Implications: The results of the research can be used by decision-makers in formulating the directions of development of the transport system, and the entities responsible for the implementation of specific transport infrastructure investments, covering both linear and nodal elements. Originality/Value: The added value of this article is predicated on original research related to the determination of the premises for the selection of the transport mode in freight container transport in Poland. Requirements that could be a stimulus for implementing the modal shift idea in Polish companies. The authors confronted the research results achieved with the current scientific knowledge in this area, in addition, they also raised the topic of the Covid-19 pandemic and its impact on modal choice.

Suggested Citation

  • Damian Bonk & Sylwia Kowalska, 2020. "Modal Choice Preferences in Inland Container Transport in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 99-109.
  • Handle: RePEc:ers:journl:v:xxiii:y:2020:i:special2:p:99-109
    as

    Download full text from publisher

    File URL: https://www.ersj.eu/journal/1811/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    2. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    3. Danielis, Romeo & Marcucci, Edoardo, 2007. "Attribute cut-offs in freight service selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 506-515, September.
    4. Elżbieta Szaruga & Elżbieta Skąpska & Elżbieta Załoga & Wiesław Matwiejczuk, 2018. "Trust and Distress Prediction in Modal Shift Potential of Long-Distance Road Freight in Containers: Modeling Approach in Transport Services for Sustainability," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    5. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    6. Tao, Xuezong & Wu, Qin & Zhu, Lichao, 2017. "Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport," Energy Policy, Elsevier, vol. 101(C), pages 265-273.
    7. Y Bouchery & Jan C Fransoo, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," Post-Print hal-01954452, HAL.
    8. Bouchery, Yann & Fransoo, Jan, 2015. "Cost, carbon emissions and modal shift in intermodal network design decisions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 388-399.
    9. Tsamboulas, Dimitrios & Vrenken, Huub & Lekka, Anna-Maria, 2007. "Assessment of a transport policy potential for intermodal mode shift on a European scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 715-733, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylwia Kowalska & Damian Bonk, 2021. "Evaluation of Modal Shift in Freight Transport: Case Study of Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 851-862.
    2. Piotr Durajczyk & Natalia Drop & Marianna Maruszczak, 2021. "Possibilities of Implementation of the System of Automatic Indication of Safe Clearance under the Bridge in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 830-849.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    2. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    3. Hu, Qiaolin & Gu, Weihua & Wang, Shuaian, 2022. "Optimal subsidy scheme design for promoting intermodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Masone, Adriano & Marzano, Vittorio & Simonelli, Fulvio & Sterle, Claudio, 2024. "Exact and heuristic approaches for the Modal Shift Incentive Problem," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    5. Stephen Okyere & Jiaqi Yang & Charles Anum Adams, 2022. "Optimizing the Sustainable Multimodal Freight Transport and Logistics System Based on the Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    6. Tao, Xuezong & Wu, Qin & Zhu, Lichao, 2017. "Mitigation potential of CO2 emissions from modal shift induced by subsidy in hinterland container transport," Energy Policy, Elsevier, vol. 101(C), pages 265-273.
    7. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    9. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    10. Daniel Ruben Pinchasik & Inger Beate Hovi & Christian Svendsen Mjøsund & Stein Erik Grønland & Erik Fridell & Martin Jerksjö, 2020. "Crossing Borders and Expanding Modal Shift Measures: Effects on Mode Choice and Emissions from Freight Transport in the Nordics," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    11. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    12. Jiang, Xiaodan & Fan, Houming & Luo, Meifeng & Xu, Zhenlin, 2020. "Strategic port competition in multimodal network development considering shippers’ choice," Transport Policy, Elsevier, vol. 90(C), pages 68-89.
    13. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    14. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    15. Mengjie Zhang & Lei Wang & Huanhuan Feng & Luwei Zhang & Xiaoshuan Zhang & Jun Li, 2020. "Modeling Method for Cost and Carbon Emission of Sheep Transportation Based on Path Optimization," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    16. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    17. Vega, Amaya & Feo-Valero, Maria & Espino-Espino, Raquel, 2018. "The potential impact of Brexit on Ireland's demand for shipping services to continental Europe," Transport Policy, Elsevier, vol. 71(C), pages 1-13.
    18. Kumar, Aalok & Anbanandam, Ramesh, 2020. "Evaluating the interrelationships among inhibitors to intermodal railroad freight transport in emerging economies: A multi-stakeholder perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 559-581.
    19. El Yaagoubi, Amina & Ferjani, Aicha & Essaghir, Yasmina & Sheikhahmadi, Farrokh & Abourraja, Mohamed Nezar & Boukachour, Jaouad & Baron, Marie-Laure & Duvallet, Claude & Khodadad-Saryazdi, Ali, 2022. "A logistic model for a french intermodal rail/road freight transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.

    More about this item

    Keywords

    COVID-19; combine transport; intermodal transport; modal shift; rail transport.;
    All these keywords.

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiii:y:2020:i:special2:p:99-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.