IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxiiiy2020i4p1230-1245.html
   My bibliography  Save this article

Parametric and Non-parametric Methods in Mass Appraisal on Poorly Developed Real Estate Markets

Author

Listed:
  • Sebastian Gnat
  • Mariusz Doszyn

Abstract

Purpose: The objective of the article is to identify machine learning methods that provide the best real estate appraisals for small-sized samples, particularly on poorly developed markets. A hypothesis is verified according to which machine learning methods result in more accurate appraisals than multiple regression models do, taking into account sample sizes. Design/Methodology/Approach: Four types of regression were employed in the study: a multiple regression model, a ridge regression model, random forest regression and k nearest neighbours regression. A sampling scheme was proposed which enables defining the impact of a sample size in training datasets on the accuracy of appraisals in test datasets. Findings: The research enabled drawing several conclusions. First of all, the greater the training set was, the more precise the appraisals in a test set were. The conclusion drawn is that a reduction of a training set causes the deterioration of modelling results, but such deterioration is not substantial. Secondly, ridge regression model appeared to be the best model, and thereby the one most resistant to a low number of data. This model, apart from demonstrating the greatest resistance, additionally has the advantage of being a parametric, hence allowing inference. Practical Implications: Presented considerations are important, for instance in the case of valuations conducted for fiscal purposes, when it becomes necessary to determine the value of every type of real properties, even the ones featuring sporadically occurring states of properties. Originality/Value: The study contains modelling of the values defined by property appraisers, and not prices, as in the majority of studies. This decision enabled increasing the diversity of states of real estate properties, thereby including in the modelling process not just those real properties which are most typically traded.

Suggested Citation

  • Sebastian Gnat & Mariusz Doszyn, 2020. "Parametric and Non-parametric Methods in Mass Appraisal on Poorly Developed Real Estate Markets," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1230-1245.
  • Handle: RePEc:ers:journl:v:xxiii:y:2020:i:4:p:1230-1245
    as

    Download full text from publisher

    File URL: https://www.ersj.eu/journal/1740/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:arz:wpaper:eres2009-153 is not listed on IDEAS
    2. Jozef Zurada & Alan S. Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 349-388.
    3. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    4. Antipov, Evgeny & Pokryshevskaya, Elena, 2010. "Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics," MPRA Paper 27645, University Library of Munich, Germany.
    5. Mariusz Doszyń, 2019. "Intermittent demand forecasting in the Enterprise: Empirical verification," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(5), pages 459-469, August.
    6. John Kilpatrick, 2011. "Expert systems and mass appraisal," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 29(4/5), pages 529-550, July.
    7. Hans R. Isakson, 1998. "The Review of Real Estate Appraisals Using Multiple Regression Analysis," Journal of Real Estate Research, American Real Estate Society, vol. 15(2), pages 177-190.
    8. Pace, R Kelley, 1996. "Relative Performance of the Grid, Nearest Neighbor, and OLS Estimators," The Journal of Real Estate Finance and Economics, Springer, vol. 13(3), pages 203-218, November.
    9. W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
    10. Vincenzo Del Giudice & Pierfrancesco De Paola & Fabiana Forte & Benedetto Manganelli, 2017. "Real Estate Appraisals with Bayesian Approach and Markov Chain Hybrid Monte Carlo Method: An Application to a Central Urban Area of Naples," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Doszyń, 2024. "Might expert knowledge improve econometric real estate mass appraisal?," The Journal of Real Estate Finance and Economics, Springer, vol. 69(4), pages 719-740, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Gnat, 2021. "Property Mass Valuation on Small Markets," Land, MDPI, vol. 10(4), pages 1-14, April.
    2. Mariusz Doszyń, 2024. "Might expert knowledge improve econometric real estate mass appraisal?," The Journal of Real Estate Finance and Economics, Springer, vol. 69(4), pages 719-740, November.
    3. Daikun Wang & Victor Jing Li, 2019. "Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    4. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    5. Daikun Wang & Victor Jing Li & Huayi Yu, 2020. "Mass Appraisal Modeling of Real Estate in Urban Centers by Geographically and Temporally Weighted Regression: A Case Study of Beijing’s Core Area," Land, MDPI, vol. 9(5), pages 1-18, May.
    6. Doszyń Mariusz, 2020. "Econometric Support of a Mass Valuation Process," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 81-94, June.
    7. Gnat Sebastian, 2020. "Impact of the Regularization of Regression Models on the Results of the Mass Valuation of Real Estate," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 163-176, June.
    8. Susanna Levantesi & Gabriella Piscopo, 2020. "The Importance of Economic Variables on London Real Estate Market: A Random Forest Approach," Risks, MDPI, vol. 8(4), pages 1-17, October.
    9. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    10. Kokot Sebastian & Gnat Sebastian, 2019. "Simulative Verification of the Possibility of using Multiple Regression Models for Real Estate Appraisal," Real Estate Management and Valuation, Sciendo, vol. 27(3), pages 109-123, September.
    11. Marco Locurcio & Pierluigi Morano & Francesco Tajani & Felicia Di Liddo, 2020. "An Innovative GIS-Based Territorial Information Tool for the Evaluation of Corporate Properties: An Application to the Italian Context," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    12. Kobylińska Katarzyna, 2021. "The Application of Spatial Autoregressive Models for Analyzing the Influence of Spatial Factors on Real Estate Prices and Values," Real Estate Management and Valuation, Sciendo, vol. 29(4), pages 23-35, December.
    13. Jorge Chica-Olmo & Rafael Cano-Guervos & Mario Chica-Rivas, 2019. "Estimation of Housing Price Variations Using Spatio-Temporal Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    14. Jannet C. Bencure & Nitin K. Tripathi & Hiroyuki Miyazaki & Sarawut Ninsawat & Sohee Minsun Kim, 2019. "Development of an Innovative Land Valuation Model (iLVM) for Mass Appraisal Application in Sub-Urban Areas Using AHP: An Integration of Theoretical and Practical Approaches," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    15. Michalis Doumpos & Dimitrios Papastamos & Dimitrios Andritsos & Constantin Zopounidis, 2021. "Developing automated valuation models for estimating property values: a comparison of global and locally weighted approaches," Annals of Operations Research, Springer, vol. 306(1), pages 415-433, November.
    16. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    17. Takahiro Yoshida & Daisuke Murakami & Hajime Seya, 2024. "Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset," The Journal of Real Estate Finance and Economics, Springer, vol. 69(1), pages 1-28, July.
    18. Mirosław Bełej & Radosław Cellmer & Michał Głuszak, 2020. "The Impact of Airport Proximity on Single-Family House Prices—Evidence from Poland," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    19. Damian Przekop, 2022. "Artificial Neural Networks vs Spatial Regression Approach in Property Valuation," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 14(2), pages 199-223, June.
    20. Chica-Olmo, Jorge & Cano-Guervos, Rafael, 2020. "Does my house have a premium or discount in relation to my neighbors? A regression-kriging approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).

    More about this item

    Keywords

    Purpose: The objective of the article is to identify machine learning methods that provide the best real estate appraisals for small-sized samples; particularly on poorly developed markets. A hypothesis is verified according to which machine learning methods result in more accurate appraisals than multiple regression models do; taking into account sample sizes. Design/Methodology/Approach: Four types of regression were employed in the study: a multiple regression model; a ridge regression model; random forest regression and k nearest neighbours regression. A sampling scheme was proposed which enables defining the impact of a sample size in training datasets on the accuracy of appraisals in test datasets. Findings: The research enabled drawing several conclusions. First of all; the greater the training set was; the more precise the appraisals in a test set were. The conclusion drawn is that a reduction of a training set causes the deterioration of modelling results; but such deterioration is not substantial. Secondly; ridge regression model appeared to be the best model; and thereby the one most resistant to a low number of data. This model; apart from demonstrating the greatest resistance; additionally has the advantage of being a parametric; hence allowing inference. Practical Implications: Presented considerations are important; for instance in the case of valuations conducted for fiscal purposes; when it becomes necessary to determine the value of every type of real properties; even the ones featuring sporadically occurring states of properties. Originality/Value: The study contains modelling of the values defined by property appraisers; and not prices; as in the majority of studies. This decision enabled increasing the diversity of states of real estate properties; thereby including in the modelling process not just those real properties which are most typically traded.;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiii:y:2020:i:4:p:1230-1245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.