IDEAS home Printed from https://ideas.repec.org/a/vrs/foeste/v20y2020i1p163-176n9.html
   My bibliography  Save this article

Impact of the Regularization of Regression Models on the Results of the Mass Valuation of Real Estate

Author

Listed:
  • Gnat Sebastian

    (University of Szczecin, Institute of Economics and Finance, Mickiewicza 64, 71-101Szczecin, Poland)

Abstract

Research background: Mass appraisal is a process in which multiple properties are appraised simultaneously, with a uniform approach. One of the tools that can be used in this area are multiple regression models. In the valuation of real estate features are often described on an ordinal or nominal scale. Replacing them with dummy variables with an insufficient number of observations leads to multicollinearity. On the other hand, there is a risk of overfitting the model. One of the ways to eliminate or weaken these phenomena is to introduce regularization based on a model’s penalization for the high values of its weights.Purpose: The aim of the study is to verify the hypothesis whether regularized regression reduces the errors of property valuation and which of the analyzed methods is the most effective in this context.Research methodology: The article will present a study in which two ways of regularization will be applied – ridge and lasso regression, in the context of their impact on the errors of property valuation. The analyzed data set includes over 300 land properties valued by property appraisers. The key aspects of the study are the selection of optimal values of the regularization parameter and its influence on model’s errors with a different number of observations in the training sets.Results: The study showed that regularization improves valuation results and, more specifically, allows for lower average absolute percentage errors. The improvement of model effectiveness was more pronounced in the case of ridge regression. An important result is also that regularization has provided a higher accuracy of valuation compared to multiple regression models for smaller training sets.Novelty: The article confirms the effectiveness of regularization as a way to eliminate the problem of multicollinearity or overfitting of the model. The results showed that ridge regression can be an effective way of modelling the value of real estate. Especially in the case of a small amount of market data, which is an important conclusion in the context of the real estate market.

Suggested Citation

  • Gnat Sebastian, 2020. "Impact of the Regularization of Regression Models on the Results of the Mass Valuation of Real Estate," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 163-176, June.
  • Handle: RePEc:vrs:foeste:v:20:y:2020:i:1:p:163-176:n:9
    DOI: 10.2478/foli-2020-0009
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/foli-2020-0009
    Download Restriction: no

    File URL: https://libkey.io/10.2478/foli-2020-0009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jozef Zurada & Alan S. Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 349-388.
    2. W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
    3. Hans R. Isakson, 1998. "The Review of Real Estate Appraisals Using Multiple Regression Analysis," Journal of Real Estate Research, American Real Estate Society, vol. 15(2), pages 177-190.
    4. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doszyń Mariusz, 2020. "Econometric Support of a Mass Valuation Process," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 81-94, June.
    2. Sebastian Gnat & Mariusz Doszyn, 2020. "Parametric and Non-parametric Methods in Mass Appraisal on Poorly Developed Real Estate Markets," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1230-1245.
    3. Mariusz Doszyń, 2024. "Might expert knowledge improve econometric real estate mass appraisal?," The Journal of Real Estate Finance and Economics, Springer, vol. 69(4), pages 719-740, November.
    4. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    5. Daikun Wang & Victor Jing Li & Huayi Yu, 2020. "Mass Appraisal Modeling of Real Estate in Urban Centers by Geographically and Temporally Weighted Regression: A Case Study of Beijing’s Core Area," Land, MDPI, vol. 9(5), pages 1-18, May.
    6. Sebastian Gnat, 2021. "Property Mass Valuation on Small Markets," Land, MDPI, vol. 10(4), pages 1-14, April.
    7. Daikun Wang & Victor Jing Li, 2019. "Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    8. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    9. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    10. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    11. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    12. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    13. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    14. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    15. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    16. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    17. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    18. Thomas M. Fullerton & Arturo Bujanda, 2018. "Commercial property values in a border metropolitan economy," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 337-360, August.
    19. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    20. Tien Foo Sing & Jesse Jingye Yang & Shi Ming Yu, 2022. "Boosted Tree Ensembles for Artificial Intelligence Based Automated Valuation Models (AI-AVM)," The Journal of Real Estate Finance and Economics, Springer, vol. 65(4), pages 649-674, November.

    More about this item

    Keywords

    property valuation; market analysis; regularization;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:foeste:v:20:y:2020:i:1:p:163-176:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.