IDEAS home Printed from https://ideas.repec.org/a/kap/jrefec/v69y2024i1d10.1007_s11146-022-09929-6.html
   My bibliography  Save this article

Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset

Author

Listed:
  • Takahiro Yoshida

    (The University of Tokyo)

  • Daisuke Murakami

    (Institute of Statistical Mathematics)

  • Hajime Seya

    (Kobe University)

Abstract

Employing a large dataset (at most, the order of n = 106), this study attempts enhance the literature on the comparison between regression and machine learning-based rent price prediction models by adding new empirical evidence and considering the spatial dependence of the observations. The regression-based approach incorporates the nearest neighbor Gaussian processes (NNGP) model, enabling the application of kriging to large datasets. In contrast, the machine learning-based approach utilizes typical models: extreme gradient boosting (XGBoost), random forest (RF), and deep neural network (DNN). The out-of-sample prediction accuracy of these models was compared using Japanese apartment rent data, with a varying order of sample sizes (i.e., n = 104, 105, 106). The results showed that, as the sample size increased, XGBoost and RF outperformed NNGP with higher out-of-sample prediction accuracy. XGBoost achieved the highest prediction accuracy for all sample sizes and error measures in both logarithmic and real scales and for all price bands if the distribution of rents is similar in training and test data. A comparison of several methods to account for the spatial dependence in RF showed that simply adding spatial coordinates to the explanatory variables may be sufficient.

Suggested Citation

  • Takahiro Yoshida & Daisuke Murakami & Hajime Seya, 2024. "Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset," The Journal of Real Estate Finance and Economics, Springer, vol. 69(1), pages 1-28, July.
  • Handle: RePEc:kap:jrefec:v:69:y:2024:i:1:d:10.1007_s11146-022-09929-6
    DOI: 10.1007/s11146-022-09929-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11146-022-09929-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11146-022-09929-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubin, Robin A, 1988. "Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 466-474, August.
    2. Daisuke Murakami & Narumasa Tsutsumida & Takahiro Yoshida & Tomoki Nakaya & Binbin Lu, 2020. "Scalable GWR: A Linear-Time Algorithm for Large-Scale Geographically Weighted Regression with Polynomial Kernels," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 111(2), pages 459-480, August.
    3. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    4. Bradley Efron, 2020. "Prediction, Estimation, and Attribution," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 636-655, April.
    5. Jozef Zurada & Alan S. Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 349-388.
    6. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    7. James Valente & ShanShan Wu & Alan Gelfand & C.F. Sirmans, 2005. "Apartment Rent Prediction Using Spatial Modeling," Journal of Real Estate Research, American Real Estate Society, vol. 27(1), pages 105-136.
    8. Winky K.O. Ho & Bo-Sin Tang & Siu Wai Wong, 2021. "Predicting property prices with machine learning algorithms," Journal of Property Research, Taylor & Francis Journals, vol. 38(1), pages 48-70, January.
    9. David Swanson & Jeff Tayman & Charles Barr, 2000. "A note on the measurement of accuracy for subnational demographic estimates," Demography, Springer;Population Association of America (PAA), vol. 37(2), pages 193-201, May.
    10. R. Kelley Pace & Darren Hayunga, 2020. "Examining the Information Content of Residuals from Hedonic and Spatial Models Using Trees and Forests," The Journal of Real Estate Finance and Economics, Springer, vol. 60(1), pages 170-180, February.
    11. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    12. Goldstein Benjamin A & Polley Eric C & Briggs Farren B. S., 2011. "Random Forests for Genetic Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-34, July.
    13. Darren Hayunga & R. Pace, 2010. "Spatial Statistics Applied to Commercial Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 103-125, August.
    14. Vladimir Vargas-Calderón & Jorge E. Camargo, 2022. "Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(12), pages 2794-2807, December.
    15. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    16. Agostino Valier, 2020. "Who performs better? AVMs vs hedonic models," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 38(3), pages 213-225, March.
    17. Bradley Efron, 2020. "Prediction, Estimation, and Attribution," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 28-59, December.
    18. R. Kelley Pace & James P. Lesage & Shuang Zhu, 2013. "Interpretation and Computation of Estimates from Regression Models using Spatial Filtering," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 352-369, September.
    19. R. Kelley Pace & James P. LeSage, 2004. "Spatial Statistics and Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 147-148, September.
    20. Morito Tsutsumi & Hajime Seya, 2009. "Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits," Journal of Geographical Systems, Springer, vol. 11(4), pages 357-380, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Felix Lorenz & Jonas Willwersch & Marcelo Cajias & Franz Fuerst, 2023. "Interpretable machine learning for real estate market analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(5), pages 1178-1208, September.
    3. Eilers, Lea, 2016. "Spatial Dependence in Apartment Offering Prices in Hamburg," VfS Annual Conference 2016 (Augsburg): Demographic Change 145639, Verein für Socialpolitik / German Economic Association.
    4. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    5. Hua Sun & Yong Tu & Shi-Ming Yu, 2005. "A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 31(2), pages 155-187, September.
    6. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    7. Linda Gerkman, 2012. "Empirical spatial econometric modelling of small scale neighbourhood," Journal of Geographical Systems, Springer, vol. 14(3), pages 283-298, July.
    8. Orçun Moralı & Neslihan Yılmaz, 2022. "An Analysis of Spatial Dependence in Real Estate Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 64(1), pages 93-115, January.
    9. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    10. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    11. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    12. Jungsun Kim & Jaewoong Won & Hyeongsoon Kim & Joonghyeok Heo, 2021. "Machine-Learning-Based Prediction of Land Prices in Seoul, South Korea," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    13. Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
    14. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    15. Jeffrey P. Cohen & Cletus C. Coughlin, 2008. "Spatial Hedonic Models Of Airport Noise, Proximity, And Housing Prices," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 859-878, December.
    16. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    17. Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2024. "Interpretable Machine Learning Using Partial Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 519-540, June.
    18. Julia Koschinsky & Nancy Lozano-Gracia & Gianfranco Piras, 2012. "The welfare benefit of a home’s location: an empirical comparison of spatial and non-spatial model estimates," Journal of Geographical Systems, Springer, vol. 14(3), pages 319-356, July.
    19. Rich, Jeppe & Myhrmann, Marcus Skyum & Mabit, Stefan Eriksen, 2023. "Our children cycle less - A Danish pseudo-panel analysis," Journal of Transport Geography, Elsevier, vol. 106(C).
    20. Helen R. Neill & David M. Hassenzahl & Djeto D. Assane, 2007. "Estimating the Effect of Air Quality: Spatial versus Traditional Hedonic Price Models," Southern Economic Journal, John Wiley & Sons, vol. 73(4), pages 1088-1111, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jrefec:v:69:y:2024:i:1:d:10.1007_s11146-022-09929-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.