IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i4p112-d432614.html
   My bibliography  Save this article

The Importance of Economic Variables on London Real Estate Market: A Random Forest Approach

Author

Listed:
  • Susanna Levantesi

    (Department of Statistics, Sapienza University of Rome, 00161 Rome, Italy)

  • Gabriella Piscopo

    (Department of Economics and Statistical Science, University of Naples Federico II, 80138 Naples, Italy)

Abstract

This paper follows the recent literature on real estate price prediction and proposes to take advantage of machine learning techniques to better explain which variables are more important in describing the real estate market evolution. We apply the random forest algorithm on London real estate data and analyze the local variables that influence the interaction between housing demand, supply and price. The variables choice is based on an urban point of view, where the main force driving the market is the interaction between local factors like population growth, net migration, new buildings and net supply.

Suggested Citation

  • Susanna Levantesi & Gabriella Piscopo, 2020. "The Importance of Economic Variables on London Real Estate Market: A Random Forest Approach," Risks, MDPI, vol. 8(4), pages 1-17, October.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:4:p:112-:d:432614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/4/112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/4/112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katsuyuki Tanaka & Takuo Higashide & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Analyzing Industry‐Level Vulnerability By Predicting Financial Bankruptcy," Economic Inquiry, Western Economic Association International, vol. 57(4), pages 2017-2034, October.
    2. Jorge Chica-Olmo, 2007. "Prediction of Housing Location Price by a Multivariate Spatial Method: Cokriging," Journal of Real Estate Research, American Real Estate Society, vol. 29(1), pages 95-114.
    3. Jozef Zurada & Alan S. Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 349-388.
    4. Avi Goldfarb & Shane M. Greenstein & Catherine E. Tucker, 2015. "Economic Analysis of the Digital Economy," NBER Books, National Bureau of Economic Research, Inc, number gree13-1.
    5. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    6. Jian Guan & Jozef Zurada & Alan S. Levitan, 2008. "An Adaptive Neuro-Fuzzy Inference System Based Approach to Real Estate Property Assessment," Journal of Real Estate Research, American Real Estate Society, vol. 30(4), pages 395-422.
    7. Nghiep Nguyen & Al Cripps, 2001. "Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks," Journal of Real Estate Research, American Real Estate Society, vol. 22(3), pages 313-336.
    8. Antipov, Evgeny & Pokryshevskaya, Elena, 2010. "Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics," MPRA Paper 27645, University Library of Munich, Germany.
    9. Emilia Lorenzo & Gabriella Piscopo & Marilena Sibillo & Roberto Tizzano, 2021. "Reverse mortgages through artificial intelligence: new opportunities for the actuaries," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 23-35, June.
    10. Raden Aswin Rahadi & Sudarso Kaderi Wiryono & Deddy Priatmodjo Koesrindartoto & Indra Budiman Syamwil, 2015. "Factors influencing the price of housing in Indonesia," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 8(2), pages 169-188, June.
    11. Glaeser, Edward L. & Gyourko, Joseph & Morales, Eduardo & Nathanson, Charles G., 2014. "Housing dynamics: An urban approach," Journal of Urban Economics, Elsevier, vol. 81(C), pages 45-56.
    12. Goldfarb, Avi & Greenstein, Shane M. & Tucker, Catherine E. (ed.), 2015. "Economic Analysis of the Digital Economy," National Bureau of Economic Research Books, University of Chicago Press, number 9780226206981.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Lynn Wu & Erik Brynjolfsson, 2015. "The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 89-118, National Bureau of Economic Research, Inc.
    15. Bradford Case & John Clapp & Robin Dubin & Mauricio Rodriguez, 2004. "Modeling Spatial and Temporal House Price Patterns: A Comparison of Four Models," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 167-191, September.
    16. Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
    17. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elżbieta Jasińska & Edward Preweda, 2021. "Statistical Modelling of the Market Value of Dwellings, on the Example of the City of Kraków," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    2. Cyprian Chwiałkowski & Adam Zydroń, 2021. "Socio-Economic and Spatial Characteristics of Wielkopolski National Park: Application of the Hedonic Pricing Method," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    3. Mahdieh Yazdani, 2021. "Machine Learning, Deep Learning, and Hedonic Methods for Real Estate Price Prediction," Papers 2110.07151, arXiv.org.
    4. Sisman, S. & Aydinoglu, A.C., 2022. "Improving performance of mass real estate valuation through application of the dataset optimization and Spatially Constrained Multivariate Clustering Analysis," Land Use Policy, Elsevier, vol. 119(C).
    5. Yu, Mengting & Principato, Ludovica & Formentini, Marco & Mattia, Giovanni & Cicatiello, Clara & Capoccia, Leonardo & Secondi, Luca, 2024. "Unlocking the potential of surplus food: A blockchain approach to enhance equitable distribution and address food insecurity in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    6. Cyprian Chwiałkowski & Adam Zydroń & Dariusz Kayzer, 2022. "Assessing the Impact of Selected Attributes on Dwelling Prices Using Ordinary Least Squares Regression and Geographically Weighted Regression: A Case Study in Poznań, Poland," Land, MDPI, vol. 12(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
    2. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    3. Tien Foo Sing & Jesse Jingye Yang & Shi Ming Yu, 2022. "Boosted Tree Ensembles for Artificial Intelligence Based Automated Valuation Models (AI-AVM)," The Journal of Real Estate Finance and Economics, Springer, vol. 65(4), pages 649-674, November.
    4. Solomon Y. Deku & Alper Kara & Artur Semeyutin, 2021. "The predictive strength of MBS yield spreads during asset bubbles," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 111-142, January.
    5. Masha Krupenkin & David Rothschild & Shawndra Hill & Elad Yom-Tov, 2019. "President Trump Stress Disorder: Partisanship, Ethnicity, and Expressive Reporting of Mental Distress After the 2016 Election," SAGE Open, , vol. 9(1), pages 21582440198, March.
    6. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    7. Wenting Zhang & Shigeyuki Hamori, 2020. "Do Machine Learning Techniques and Dynamic Methods Help Forecast US Natural Gas Crises?," Energies, MDPI, vol. 13(9), pages 1-22, May.
    8. Tariq Aziz & Valeed Ahmad Ansari, 2021. "How Does Google Search Affect the Stock Market? Evidence from Indian Companies," Vision, , vol. 25(2), pages 224-232, June.
    9. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    10. Sebastian Gnat & Mariusz Doszyn, 2020. "Parametric and Non-parametric Methods in Mass Appraisal on Poorly Developed Real Estate Markets," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1230-1245.
    11. Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
    12. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    13. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    14. M. Elshendy & A. Fronzetti Colladon & E. Battistoni & P. A. Gloor, 2021. "Using four different online media sources to forecast the crude oil price," Papers 2105.09154, arXiv.org.
    15. Tsoyu Calvin Lin & Shih-Hsun Hsu, 2020. "Forecasting Housing Markets from Number of Visits to Actual Price Registration System," International Real Estate Review, Global Social Science Institute, vol. 23(4), pages 505-536.
    16. Mingming Hu & Haiyan Song, 2020. "Data source combination for tourism demand forecasting," Tourism Economics, , vol. 26(7), pages 1248-1265, November.
    17. Tong Liu & Guojun He & Alexis Lau, 2018. "Avoidance behavior against air pollution: evidence from online search indices for anti-PM2.5 masks and air filters in Chinese cities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 325-363, April.
    18. Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
    19. Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
    20. Antonelli, Cristiano, 2017. "Digital knowledge generation and the appropriability trade-off," Telecommunications Policy, Elsevier, vol. 41(10), pages 991-1002.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:4:p:112-:d:432614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.