IDEAS home Printed from https://ideas.repec.org/a/eme/jfeppp/jfep-09-2021-0242.html
   My bibliography  Save this article

On extreme value theory in the presence of technical trend: pre and post Covid-19 analysis of cryptocurrency markets

Author

Listed:
  • Saji Thazhungal Govindan Nair

Abstract

Purpose - Research on price extremes and overreactions as potential violations of market efficiency has a long tradition in investment literature. Arguably, very few studies to date have addressed this issue in cryptocurrencies trading. The purpose of this paper is to consider the extreme value modelling for forecasting COVID-19 effects on cryptocoin markets. Additionally, this paper examines the importance of technical trading indicators in predicting the extreme price behaviour of cryptocurrencies. Design/methodology/approach - This paper decomposes the daily-time series returns of four cryptocurrency returns into potential maximum gains (PMGs) and potential maximum losses (PMLs) at first and then tests their lead–lag relations under an econometric framework. This paper also investigates the non-random properties of cryptocoins by computing the incremental explanatory power of PML–PMG modelling with technical trading indicators controlled. Besides, this paper executes an event study to identify significant changes caused by COVID-19-related events, which is capable of analysing the cryptocoin market overreactions. Findings - The findings of this paper produce the evidence of both market overreactions and trend persistence in the potential gains and losses from coins trading. Extreme price behaviour explains volatility and price trends in crypto markets before and after the outbreak of a pandemic that substantiate the non-random walk behaviour of crypto returns. The presence of technical trading indicators as control variables in the extreme value regressions significantly improves the predictive power of models. COVID-19 crisis affects the market efficiency of cryptocurrencies that improves the usefulness of extreme value predictions with technical analysis. Research limitations/implications - This paper strongly supports for the robustness of technical trading strategies in cryptocurrency markets. However, the “beast is moving quick” and uncertainty as to the new normalcy about the post-COVID-19 world puts constraint on making best predictions. Practical implications - The paper contributes substantially to our understanding of the pricing efficiency of cryptocurrency markets after the COVID-19 outbreak. The findings of continuing return predictability and price volatility during COVID-19 show that profitable investment opportunities for cryptocoin traders are prevailing in pandemic times. Originality/value - The paper is unique to understand extreme return reversals behaviour of cryptocurrency markets regarding events related to COVID-19 breakout.

Suggested Citation

  • Saji Thazhungal Govindan Nair, 2021. "On extreme value theory in the presence of technical trend: pre and post Covid-19 analysis of cryptocurrency markets," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 14(4), pages 533-561, December.
  • Handle: RePEc:eme:jfeppp:jfep-09-2021-0242
    DOI: 10.1108/JFEP-09-2021-0242
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JFEP-09-2021-0242/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/JFEP-09-2021-0242/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/JFEP-09-2021-0242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gary Smith, 2016. "Overreaction of Dow stocks," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1251831-125, December.
    2. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
    3. Lars Ivar Hagfors & Hilde Hørthe Kamperud & Florentina Paraschiv & Marcel Prokopczuk & Alma Sator & Sjur Westgaard, 2016. "Prediction of extreme price occurrences in the German day-ahead electricity market," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1929-1948, December.
    4. Chris Brooks & Sotiris Tsolacos, 1999. "The impact of economic and financial factors on UK property performance," Journal of Property Research, Taylor & Francis Journals, vol. 16(2), pages 139-152, January.
    5. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    6. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    7. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
    9. Ahmed, Shaker & Grobys, Klaus & Sapkota, Niranjan, 2020. "Profitability of technical trading rules among cryptocurrencies with privacy function," Finance Research Letters, Elsevier, vol. 35(C).
    10. Emna Mnif & Anis Jarboui, 2021. "Resilience of Islamic cryptocurrency markets to Covid-19 shocks and the Federal Reserve policy," Asian Journal of Accounting Research, Emerald Group Publishing Limited, vol. 7(1), pages 59-70, July.
    11. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    12. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    13. Imad A. Moosa, 2020. "The bitcoin: a sparkling bubble or price discovery?," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 93-113, March.
    14. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    15. repec:bla:jfinan:v:59:y:2004:i:5:p:2145-2176 is not listed on IDEAS
    16. Matheus José Silva de Souza & Danilo Guimarães Franco Ramos & Marina Garcia Pena & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Examination of the profitability of technical analysis based on moving average strategies in BRICS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
    17. Turan G. Bali, 2003. "An Extreme Value Approach to Estimating Volatility and Value at Risk," The Journal of Business, University of Chicago Press, vol. 76(1), pages 83-108, January.
    18. Giancarlo Giudici & Alistair Milne & Dmitri Vinogradov, 2020. "Cryptocurrencies: market analysis and perspectives," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 1-18, March.
    19. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    20. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    21. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    22. Chopra, Navin & Lakonishok, Josef & Ritter, Jay R., 1992. "Measuring abnormal performance : Do stocks overreact?," Journal of Financial Economics, Elsevier, vol. 31(2), pages 235-268, April.
    23. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    24. Steven Haryanto & Athor Subroto & Maria Ulpah, 2020. "Disposition effect and herding behavior in the cryptocurrency market," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 115-132, March.
    25. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    26. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    27. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    28. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    29. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    30. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    31. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    32. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    33. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    34. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    35. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    36. Camerer, Colin, 1989. "Bubbles and Fads in Asset Prices," Journal of Economic Surveys, Wiley Blackwell, vol. 3(1), pages 3-41.
    37. Li, Jun & Yu, Jianfeng, 2012. "Investor attention, psychological anchors, and stock return predictability," Journal of Financial Economics, Elsevier, vol. 104(2), pages 401-419.
    38. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    39. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    40. E. Mnif & A. Jarboui & K. Mouakhar, 2020. "How the Cryptocurrency Market Has Performed during COVID 19? A Multifractal Analysis," Post-Print hal-04457136, HAL.
    41. Benito Muela, Sonia & López Martín, Carmen & Arguedas Sanz, Raquel, 2017. "An Application Of Extreme Value Theory In Estimating Liquidity Risk," European Research on Management and Business Economics (ERMBE), Academia Europea de Dirección y Economía de la Empresa (AEDEM), vol. 23(3), pages 157-164.
    42. Muhammad Ali Nasir & Toan Luu Duc Huynh & Sang Phu Nguyen & Duy Duong, 2019. "Forecasting cryptocurrency returns and volume using search engines," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-13, December.
    43. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    44. Wang, Jun & Wu, Yangru, 2011. "Risk adjustment and momentum sources," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1427-1435, June.
    45. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    46. Holmstrom, Bengt & Tirole, Jean, 1993. "Market Liquidity and Performance Monitoring," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 678-709, August.
    47. Haibin Xie & Shouyang Wang, 2018. "Timing the market: the economic value of price extremes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-24, December.
    48. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    49. Zarowin, Paul, 1990. "Size, Seasonality, and Stock Market Overreaction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(1), pages 113-125, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    5. Giancarlo Giudici & Alistair Milne & Dmitri Vinogradov, 2020. "Cryptocurrencies: market analysis and perspectives," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 1-18, March.
    6. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    7. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    8. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    9. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    10. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    11. Dumitriu, Ramona & Stefanescu, Razvan & Nistor, Costel, 2012. "Reactions of the capital markets to the shocks before and during the global crisis," MPRA Paper 41540, University Library of Munich, Germany, revised 10 Jan 2012.
    12. Li, Xiao & Wu, Ruoxi & Wang, Chen, 2024. "Impacts of bitcoin on monetary system: Is China's bitcoin ban necessary?," Research in International Business and Finance, Elsevier, vol. 69(C).
    13. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    14. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    15. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    16. Aiman Hairudin & Imtiaz Mohammad Sifat & Azhar Mohamad & Yusniliyana Yusof, 2022. "Cryptocurrencies: A survey on acceptance, governance and market dynamics," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4633-4659, October.
    17. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    18. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    19. Xinyu Huang & Weihao Han & David Newton & Emmanouil Platanakis & Dimitrios Stafylas & Charles Sutcliffe, 2023. "The diversification benefits of cryptocurrency asset categories and estimation risk: pre and post Covid-19," The European Journal of Finance, Taylor & Francis Journals, vol. 29(7), pages 800-825, May.
    20. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jfeppp:jfep-09-2021-0242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.