IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v169y2023ics1366554522003672.html
   My bibliography  Save this article

The multi-visit drone routing problem for pickup and delivery services

Author

Listed:
  • Meng, Shanshan
  • Guo, Xiuping
  • Li, Dong
  • Liu, Guoquan

Abstract

Unmanned aerial vehicles, commonly known as drones, have gained wide attention in recent years due to their potential of revolutionizing logistics and transportation. In this paper, we consider a variant of the combined truck-drone routing problem, which allows drones to serve multiple customers and provide both pickup and delivery services in each flight. The problem concerns the deployment and routing of a fleet of trucks, each equipped with a supporting drone, to serve all the pickup and delivery demands of a set of customers with minimal total cost. We explicitly model the energy consumption of drones by their travel distance, curb weight and the carrying weight of parcels, develop a mixed-integer linear programming model (MILP) with problem-customized inequalities, and show a sufficient condition for the benefit of the combined truck-drone mode over the truck-only mode. Considering the complexity of the MILP model, we propose a novel two-stage heuristic algorithm in which a maximum payload method is developed to construct the initial solutions, followed by an improved simulated annealing algorithm with problem-specific neighborhood operators and tailored acceleration strategies. Furthermore, two methods are developed to test the feasibility for both trucks and drones in each solution. The proposed algorithm outperforms two benchmark heuristics in our numerical experiments, which also demonstrate the considerable benefit of allowing multiple visits and both pickup and delivery operations in each drone flight.

Suggested Citation

  • Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:transe:v:169:y:2023:i:c:s1366554522003672
    DOI: 10.1016/j.tre.2022.102990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522003672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Cheng & Demir, Emrah & Huang, Yuan & Qiu, Rongzu, 2021. "The adoption of self-driving delivery robots in last mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    2. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    3. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    5. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    6. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. Nur Mayke Eka Normasari & Vincent F. Yu & Candra Bachtiyar & Sukoyo, 2019. "A Simulated Annealing Heuristic for the Capacitated Green Vehicle Routing Problem," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-18, January.
    8. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    9. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    10. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    11. Roberto Roberti & Mario Ruthmair, 2021. "Exact Methods for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 55(2), pages 315-335, March.
    12. Joshuah K. Stolaroff & Constantine Samaras & Emma R. O’Neill & Alia Lubers & Alexandra S. Mitchell & Daniel Ceperley, 2018. "Author Correction: Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    13. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    14. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Sun, Xuting & Fang, Minghao & Guo, Shu & Hu, Yue, 2024. "UAV-rider coordinated dispatching for the on-demand delivery service provider," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    4. Meng, Zhu & Zhu, Ning & Zhang, Guowei & Yang, Yuance & Liu, Zhaocai & Ke, Ginger Y., 2024. "Data-driven drone pre-positioning for traffic accident rapid assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Meng, Shanshan & Chen, Yanru & Li, Dong, 2024. "The multi-visit drone-assisted pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 314(2), pages 685-702.
    6. Zandieh, Fatemeh & Ghannadpour, Seyed Farid & Mazdeh, Mohammad Mahdavi, 2024. "New integrated routing and surveillance model with drones and charging station considerations," European Journal of Operational Research, Elsevier, vol. 313(2), pages 527-547.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    2. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    3. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    5. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    6. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    7. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    8. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    9. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    10. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    12. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    13. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    14. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    15. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    16. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    17. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    18. Pina-Pardo, Juan C. & Silva, Daniel F. & Smith, Alice E. & Gatica, Ricardo A., 2024. "Fleet resupply by drones for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 316(1), pages 168-182.
    19. Morandi, Nicola & Leus, Roel & Matuschke, Jannik & Yaman, Hande, 2023. "The traveling salesman problem with drones: The benefits of retraversing the arcs," Other publications TiSEM 09f54df0-875e-40af-a43d-5, Tilburg University, School of Economics and Management.
    20. Rave, Alexander & Fontaine, Pirmin & Kuhn, Heinrich, 2023. "Drone location and vehicle fleet planning with trucks and aerial drones," European Journal of Operational Research, Elsevier, vol. 308(1), pages 113-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:169:y:2023:i:c:s1366554522003672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.