IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v146y2021ics1366554520308565.html
   My bibliography  Save this article

The adoption of self-driving delivery robots in last mile logistics

Author

Listed:
  • Chen, Cheng
  • Demir, Emrah
  • Huang, Yuan
  • Qiu, Rongzu

Abstract

Covid-19, the global pandemic, has taught us the importance of contactless delivery service and robotic automation. Using self-driving delivery robots can provide flexibility for on-time deliveries and help better protect both driver and customers by minimizing contact. To this end, this paper introduces a new vehicle routing problem with time windows and delivery robots (VRPTWDR). With the help of delivery robots, considerable operational time savings can be achieved by dispatching robots to serve nearby customers while a driver is also serving a customer. We provide a mathematical model for the VRPTWDR and investigate the challenges and benefits of using delivery robots as assistants for city logistics. A two-stage matheurisitic algorithm is developed to solve medium scale VRPTWDR instances. Finally, results of computational experiments demonstrate the value of self-driving delivery robots in urban areas by highlighting operational limitations on route planning.

Suggested Citation

  • Chen, Cheng & Demir, Emrah & Huang, Yuan & Qiu, Rongzu, 2021. "The adoption of self-driving delivery robots in last mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:transe:v:146:y:2021:i:c:s1366554520308565
    DOI: 10.1016/j.tre.2020.102214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520308565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akeb, Hakim & Moncef, Btissam & Durand, Bruno, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 223-233.
    2. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    3. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126189, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. David Pisinger & Stefan Ropke, 2019. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 99-127, Springer.
    5. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    6. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    7. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    10. Bruno Durand & Hakim Akeb & Btissam Moncef, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris [L'élaboration d'une solution collaborative de livraisons urbaines en vu," Post-Print hal-01781155, HAL.
    11. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    12. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    13. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    2. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    3. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    4. Heimfarth, Andreas & Ostermeier, Manuel & Hübner, Alexander, 2022. "A mixed truck and robot delivery approach for the daily supply of customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 401-421.
    5. Alfandari, Laurent & Ljubić, Ivana & De Melo da Silva, Marcos, 2022. "A tailored Benders decomposition approach for last-mile delivery with autonomous robots," European Journal of Operational Research, Elsevier, vol. 299(2), pages 510-525.
    6. Juliet Orji, Ifeyinwa & Ojadi, Frank & Kalu Okwara, Ukoha, 2022. "The nexus between e-commerce adoption in a health pandemic and firm performance: The role of pandemic response strategies," Journal of Business Research, Elsevier, vol. 145(C), pages 616-635.
    7. Aziez, Imadeddine & Côté, Jean-François & Coelho, Leandro C., 2022. "Fleet sizing and routing of healthcare automated guided vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    8. Ahmed Karam & Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & El-Awady Attia, 2022. "A Review of COVID-19-Related Literature on Freight Transport: Impacts, Mitigation Strategies, Recovery Measures, and Future Research Directions," IJERPH, MDPI, vol. 19(19), pages 1-27, September.
    9. Kotzab, Herbert & Yumurtacı Hüseyinoğlu, Işık Özge & Şen, Irmak & Mena, Carlos, 2024. "Exploring home delivery service attributes: Sustainability versus delivery expectations during the COVID-19 pandemic," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    10. Xueqin Wang & Yiik Diew Wong & Kum Fai Yuen, 2021. "Does COVID-19 Promote Self-Service Usage among Modern Shoppers? An Exploration of Pandemic-Driven Behavioural Changes in Self-Collection Users," IJERPH, MDPI, vol. 18(16), pages 1-22, August.
    11. Mishra, Sabyasachee & Sharma, Ishant & Pani, Agnivesh, 2023. "Analyzing autonomous delivery acceptance in food deserts based on shopping travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    12. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    13. Mashalah, Heider Al & Hassini, Elkafi & Gunasekaran, Angappa & Bhatt (Mishra), Deepa, 2022. "The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    14. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    16. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    2. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    3. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    4. Chen, Cheng & Demir, Emrah & Huang, Yuan, 2021. "An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1164-1180.
    5. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    6. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    7. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    8. Fabian Gnegel & Stefan Schaudt & Uwe Clausen & Armin Fügenschuh, 2024. "A Graph-Refinement Algorithm to Minimize Squared Delivery Delays Using Parcel Robots," Mathematics, MDPI, vol. 12(20), pages 1-27, October.
    9. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    10. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    11. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    12. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    13. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    14. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    15. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    16. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    17. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    18. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    19. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:146:y:2021:i:c:s1366554520308565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.