IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i2p685-702.html
   My bibliography  Save this article

The multi-visit drone-assisted pickup and delivery problem with time windows

Author

Listed:
  • Meng, Shanshan
  • Chen, Yanru
  • Li, Dong

Abstract

We consider a new combined truck–drone routing problem with time windows in the context of last-mile logistics. A fleet of trucks, each equipped with an identical drone, is scheduled to provide both pickup and delivery services to a set of customers with minimum cost. Some customers are paired, in that the goods picked up from one must be delivered to the other on the same route. Drones are launched from and retrieved by trucks at a pool of designated stations, which can be used multiple times. Each drone can serve multiple customers in one flight. We formulate this problem as a large-scale mixed-integer bilinear program, with the bilinear terms used to calculate the load-time-dependent energy consumption of drones. To accelerate the solution process, multiple valid inequalities are proposed. For large-size problems, we develop a customised adaptive large neighbourhood search (ALNS) algorithm, which includes several preprocessing procedures to quickly identify infeasible solutions and accelerate the search process. Moreover, two feasibility test methods are developed for trucks and drones, along with an efficient algorithm to determine vehicles’ optimal waiting time at launch stations, which is important to consider due to the time windows. Extensive numerical experiments demonstrate the effectiveness of the valid inequalities and the strong performance of the proposed ALNS algorithm over two benchmarks in the literature, and highlight the cost-savings of the combined mode over the truck-only mode and the benefits of allowing multiple drone visits.

Suggested Citation

  • Meng, Shanshan & Chen, Yanru & Li, Dong, 2024. "The multi-visit drone-assisted pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 314(2), pages 685-702.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:685-702
    DOI: 10.1016/j.ejor.2023.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    3. Nico Dellaert & Fardin Dashty Saridarq & Tom Van Woensel & Teodor Gabriel Crainic, 2019. "Branch-and-Price–Based Algorithms for the Two-Echelon Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 463-479, March.
    4. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    5. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    6. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    7. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    8. Lu Zhen & Jiajing Gao & Zheyi Tan & Shuaian Wang & Roberto Baldacci, 2023. "Branch-price-and-cut for trucks and drones cooperative delivery," IISE Transactions, Taylor & Francis Journals, vol. 55(3), pages 271-287, March.
    9. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    10. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    11. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    12. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    13. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    14. Rave, Alexander & Fontaine, Pirmin & Kuhn, Heinrich, 2023. "Drone location and vehicle fleet planning with trucks and aerial drones," European Journal of Operational Research, Elsevier, vol. 308(1), pages 113-130.
    15. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pina-Pardo, Juan C. & Silva, Daniel F. & Smith, Alice E. & Gatica, Ricardo A., 2024. "Fleet resupply by drones for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 316(1), pages 168-182.
    2. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    3. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    4. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    5. Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
    6. Deng, Menghua & Li, Yuanbo & Ding, Jianpeng & Zhou, Yanlin & Zhang, Lianming, 2024. "Stochastic and robust truck-and-drone routing problems with deadlines: A Benders decomposition approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    7. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    8. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    9. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Zhang, Zhenzhen & Che, Yuxin & Liang, Zhe, 2024. "Split-demand multi-trip vehicle routing problem with simultaneous pickup and delivery in airport baggage transit," European Journal of Operational Research, Elsevier, vol. 312(3), pages 996-1010.
    11. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    12. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    13. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    14. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    15. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    16. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    17. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    18. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    19. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    20. Li, Hongqi & Wang, Feilong & Zhan, Zhuopeng, 2024. "Drone routing problem with swarm synchronization," European Journal of Operational Research, Elsevier, vol. 314(2), pages 477-495.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:685-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.