IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6108-d282902.html
   My bibliography  Save this article

Optimizing Transport Scheme of High Value-Added Shipments in Regions without Express Train Services

Author

Listed:
  • Boliang Lin

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Xingkui Li

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Zexi Zhang

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Yinan Zhao

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

Abstract

In railway transportation, high value-added shipments in regions with large traffic volumes are generally delivered by express train services, since these freights need to be delivered in a short time. However, there are also high value-added shipments in areas where express train services are not available. If these freights are delivered by the traditional approaches (i.e., the freight cars are delivered to the adjacent classification yard by local trains, combined with other freight cars to form a train, and finally sent to the destination according to the transportation plan) with multiple reclassifications (a reclassification is when wagons are separated from their original train and then join another train in a classification yard), it will lead to delivery delays and economic losses to shippers and contribute to severe carbon emissions. In this context, this paper proposes an innovative method to deliver high value-added shipments in regions without express train services, which is called the method of reserving axle loads. The differences in assembling and transfer costs achieved by the method of reserving axle loads and traditional method are analyzed, especially the car-hours saved for the accumulation process of freight cars in a classification yard. Then, a corresponding mathematical model is established, which involves four scenarios: reserving axle loads for departing; reserving axle loads for arriving; reserving axle loads for both departing and arriving; and not reserving axle loads. Finally, the practicability and feasibility of the model was verified by two numerical experiments.

Suggested Citation

  • Boliang Lin & Xingkui Li & Zexi Zhang & Yinan Zhao, 2019. "Optimizing Transport Scheme of High Value-Added Shipments in Regions without Express Train Services," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6108-:d:282902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang Liu & Boliang Lin & Jiaxi Wang & Jie Xiao & Siqi Liu & Jianping Wu & Jian Li, 2017. "Flow assignment model for quantitative analysis of diverting bulk freight from road to railway," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-22, August.
    2. Xiao, Jie & Pachl, Joern & Lin, Boliang & Wang, Jiaxi, 2018. "Solving the block-to-train assignment problem using the heuristic approach based on the genetic algorithm and tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 148-171.
    3. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    4. Haghani, Ali E., 1989. "Formulation and solution of a combined train routing and makeup, and empty car distribution model," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 433-452, December.
    5. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    6. Ralf Borndörfer & Torsten Klug & Thomas Schlechte & Armin Fügenschuh & Thilo Schang & Hanno Schülldorf, 2016. "The Freight Train Routing Problem for Congested Railway Networks with Mixed Traffic," Transportation Science, INFORMS, vol. 50(2), pages 408-423, May.
    7. Teodor Crainic & Jacques-A. Ferland & Jean-Marc Rousseau, 1984. "A Tactical Planning Model for Rail Freight Transportation," Transportation Science, INFORMS, vol. 18(2), pages 165-184, May.
    8. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    9. Keaton, Mark H., 1989. "Designing optimal railroad operating plans: Lagrangian relaxation and heuristic approaches," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 415-431, December.
    10. Kwon, Oh Kyoung & Martland, Carl D. & Sussman, Joseph M., 1998. "Routing and scheduling temporal and heterogeneous freight car traffic on rail networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(2), pages 101-115, June.
    11. Harry N. Newton & Cynthia Barnhart & Pamela H. Vance, 1998. "Constructing Railroad Blocking Plans to Minimize Handling Costs," Transportation Science, INFORMS, vol. 32(4), pages 330-345, November.
    12. Mark H. Keaton, 1992. "Designing Railroad Operating Plans: A Dual Adjustment Method for Implementing Lagrangian Relaxation," Transportation Science, INFORMS, vol. 26(4), pages 263-279, November.
    13. Ravindra K. Ahuja & Krishna C. Jha & Jian Liu, 2007. "Solving Real-Life Railroad Blocking Problems," Interfaces, INFORMS, vol. 37(5), pages 404-419, October.
    14. Bodin, Lawrence D. & Golden, Bruce L. & Schuster, Allan D. & Romig, William, 1980. "A model for the blocking of trains," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 115-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boliang Lin & Jingsong Duan & Jiaxi Wang & Min Sun & Wengao Peng & Chang Liu & Jie Xiao & Siqi Liu & Jianping Wu, 2018. "A study of the car-to-train assignment problem for rail express cargos in the scheduled and unscheduled train services network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    2. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    3. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    4. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Xiao, Jie & Pachl, Joern & Lin, Boliang & Wang, Jiaxi, 2018. "Solving the block-to-train assignment problem using the heuristic approach based on the genetic algorithm and tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 148-171.
    6. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    7. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    8. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    9. Schwerdfeger, Stefan & Otto, Alena & Boysen, Nils, 2021. "Rail platooning: Scheduling trains along a rail corridor with rapid-shunting facilities," European Journal of Operational Research, Elsevier, vol. 294(2), pages 760-778.
    10. Armin Fügenschuh & Henning Homfeld & Hanno Schülldorf, 2015. "Single-Car Routing in Rail Freight Transport," Transportation Science, INFORMS, vol. 49(1), pages 130-148, February.
    11. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    12. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    13. Ruf, Moritz & Cordeau, Jean-François, 2021. "Adaptive large neighborhood search for integrated planning in railroad classification yards," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 26-51.
    14. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    15. Alena Otto & Erwin Pesch, 2019. "The train-to-yard assignment problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 549-580, June.
    16. J Liu & R K Ahuja & G Şahin, 2008. "Optimal network configuration and capacity expansion of railroads," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 911-920, July.
    17. Sarah Frisch & Philipp Hungerländer & Anna Jellen & Manuel Lackenbucher & Bernhard Primas & Sebastian Steininger, 2023. "Integrated freight car routing and train scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 417-443, June.
    18. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    19. Markus Bohlin & Sara Gestrelius & Florian Dahms & Matúš Mihalák & Holger Flier, 2016. "Optimization Methods for Multistage Freight Train Formation," Transportation Science, INFORMS, vol. 50(3), pages 823-840, August.
    20. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6108-:d:282902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.