IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v37y2007i5p404-419.html
   My bibliography  Save this article

Solving Real-Life Railroad Blocking Problems

Author

Listed:
  • Ravindra K. Ahuja

    (Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32611)

  • Krishna C. Jha

    (Innovative Scheduling, Inc., GTEC, Gainesville, Florida 32641)

  • Jian Liu

    (Norfolk Southern Corporation, Atlanta, Georgia 30309)

Abstract

Each major US railroad ships millions of cars over its network annually. To reduce the intermediate handlings of shipments as they travel over the railroad network, a set of shipments is classified (or grouped together) at a railroad yard to create a block. The railroad blocking problem is to identify this classification plan for all shipments at all yards in the network to minimize the total shipment cost, i.e., to create a blocking plan. The railroad blocking problem is a very large-scale, multicommodity, flow-network-design and routing problem with billions of decision variables. Its size and mathematical difficulty preclude solving it using any commercial software package. We developed an algorithm using an emerging technique known as very large-scale neighborhood (VLSN) search that is able to solve the problem to near optimality using one to two hours of computer time on a standard workstation computer. This algorithm can also handle a variety of practical and business constraints that are necessary for implementing a solution. When we applied this algorithm to the data that several railroads provided us, the computational results were excellent. Three Class I railroad companies (a Class I railroad, as defined by the Association of American Railroads, has an operating revenue exceeding $319.3 million) in the United States---CSX Transportation, Norfolk Southern Corporation, and Burlington Northern and Santa Fe Railway---used it in developing their operating plans. Two US Class I railroads have also licensed it for regular use in developing their operating plans, and other railroads are showing considerable interest. We expect this algorithm to become an industry standard for freight railroads worldwide. In this paper, we outline our algorithm, show the computational results we received using real data, and describe areas for future research.

Suggested Citation

  • Ravindra K. Ahuja & Krishna C. Jha & Jian Liu, 2007. "Solving Real-Life Railroad Blocking Problems," Interfaces, INFORMS, vol. 37(5), pages 404-419, October.
  • Handle: RePEc:inm:orinte:v:37:y:2007:i:5:p:404-419
    DOI: 10.1287/inte.1070.0295
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1070.0295
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1070.0295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ravindra K. Ahuja & Jian Liu & James B. Orlin & Dushyant Sharma & Larry A. Shughart, 2005. "Solving Real-Life Locomotive-Scheduling Problems," Transportation Science, INFORMS, vol. 39(4), pages 503-517, November.
    2. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    3. Harry N. Newton & Cynthia Barnhart & Pamela H. Vance, 1998. "Constructing Railroad Blocking Plans to Minimize Handling Costs," Transportation Science, INFORMS, vol. 32(4), pages 330-345, November.
    4. Mark H. Keaton, 1992. "Designing Railroad Operating Plans: A Dual Adjustment Method for Implementing Lagrangian Relaxation," Transportation Science, INFORMS, vol. 26(4), pages 263-279, November.
    5. Van Dyke, Carl D., 1988. "Dynamic Management of Railroad Blocking Plans," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 29(1).
    6. Phillip J. Lederer & Ramakrishnan S. Nambimadom, 1998. "Airline Network Design," Operations Research, INFORMS, vol. 46(6), pages 785-804, December.
    7. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    8. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    9. Keaton, Mark H., 1989. "Designing optimal railroad operating plans: Lagrangian relaxation and heuristic approaches," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 415-431, December.
    10. Christopher L. Huntley & Donald E. Brown & David E. Sappington & Bernard P. Markowicz, 1995. "Freight Routing and Scheduling at CSX Transportation," Interfaces, INFORMS, vol. 25(3), pages 58-71, June.
    11. Bodin, Lawrence D. & Golden, Bruce L. & Schuster, Allan D. & Romig, William, 1980. "A model for the blocking of trains," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 115-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    2. J Liu & R K Ahuja & G Şahin, 2008. "Optimal network configuration and capacity expansion of railroads," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 911-920, July.
    3. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    4. Jin, Jian Gang & Zhao, Jun & Lee, Der-Horng, 2013. "A column generation based approach for the Train Network Design Optimization problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 1-17.
    5. Armin Fügenschuh & Henning Homfeld & Hanno Schülldorf, 2015. "Single-Car Routing in Rail Freight Transport," Transportation Science, INFORMS, vol. 49(1), pages 130-148, February.
    6. Markus Bohlin & Sara Gestrelius & Florian Dahms & Matúš Mihalák & Holger Flier, 2016. "Optimization Methods for Multistage Freight Train Formation," Transportation Science, INFORMS, vol. 50(3), pages 823-840, August.
    7. Zhimei Wang & Avishai Ceder, 2017. "Efficient design of freight train operation with double-hump yards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1600-1619, December.
    8. Lin, Bo-Liang & Wang, Zhi-Mei & Ji, Li-Jun & Tian, Ya-Ming & Zhou, Guo-Qing, 2012. "Optimizing the freight train connection service network of a large-scale rail system," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 649-667.
    9. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Boliang Lin & Jingsong Duan & Jiaxi Wang & Min Sun & Wengao Peng & Chang Liu & Jie Xiao & Siqi Liu & Jianping Wu, 2018. "A study of the car-to-train assignment problem for rail express cargos in the scheduled and unscheduled train services network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    11. Phil Ireland & Rod Case & John Fallis & Carl Van Dyke & Jason Kuehn & Marc Meketon, 2004. "The Canadian Pacific Railway Transforms Operations by Using Models to Develop Its Operating Plans," Interfaces, INFORMS, vol. 34(1), pages 5-14, February.
    12. Sarah Frisch & Philipp Hungerländer & Anna Jellen & Manuel Lackenbucher & Bernhard Primas & Sebastian Steininger, 2023. "Integrated freight car routing and train scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 417-443, June.
    13. Boliang Lin & Xingkui Li & Zexi Zhang & Yinan Zhao, 2019. "Optimizing Transport Scheme of High Value-Added Shipments in Regions without Express Train Services," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    14. Vaidyanathan, Balachandran & Ahuja, Ravindra K. & Liu, Jian & Shughart, Larry A., 2008. "Real-life locomotive planning: New formulations and computational results," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 147-168, February.
    15. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    16. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    17. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    18. Harry N. Newton & Cynthia Barnhart & Pamela H. Vance, 1998. "Constructing Railroad Blocking Plans to Minimize Handling Costs," Transportation Science, INFORMS, vol. 32(4), pages 330-345, November.
    19. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    20. Mantovani, Serena & Morganti, Gianluca & Umang, Nitish & Crainic, Teodor Gabriel & Frejinger, Emma & Larsen, Eric, 2018. "The load planning problem for double-stack intermodal trains," European Journal of Operational Research, Elsevier, vol. 267(1), pages 107-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:37:y:2007:i:5:p:404-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.