IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v102y2017icp38-59.html
   My bibliography  Save this article

Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses

Author

Listed:
  • Dijkstra, Arjan S.
  • Roodbergen, Kees Jan

Abstract

Order picking is one of the most time-critical processes in warehouses. We focus on the combined effects of routing methods and storage location assignment on process performance. We present exact formulas for the average route length under any storage location assignment for four common routing methods. Properties of optimal solutions are derived that strongly reduce the solution space. Furthermore, we provide a dynamic programming approach that determines storage location assignments, using the route length formulas and optimality properties. Experiments underline the importance of the introduced procedures by revealing storage assignment patterns that have not been described in literature before.

Suggested Citation

  • Dijkstra, Arjan S. & Roodbergen, Kees Jan, 2017. "Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 38-59.
  • Handle: RePEc:eee:transe:v:102:y:2017:i:c:p:38-59
    DOI: 10.1016/j.tre.2017.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516307852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chien-Ming Chen & Yeming Gong & René de Koster & Jo A.E.E. Van Nunen, 2010. "A Flexible Evaluative Framework for Order Picking Systems," Post-Print hal-02312453, HAL.
    2. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "A branch and bound algorithm for class based storage location assignment," European Journal of Operational Research, Elsevier, vol. 189(2), pages 492-507, September.
    3. Lisa M. Thomas & Russell D. Meller, 2014. "Analytical models for warehouse configuration," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 928-947, September.
    4. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    5. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    6. R. Dekker & M. B. M. de Koster & K. J. Roodbergen & H. van Kalleveen, 2004. "Improving Order-Picking Response Time at Ankor's Warehouse," Interfaces, INFORMS, vol. 34(4), pages 303-313, August.
    7. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    8. Subir Rao & Gajendra Adil, 2013. "Optimal class boundaries, number of aisles, and pick list size for low-level order picking systems," IISE Transactions, Taylor & Francis Journals, vol. 45(12), pages 1309-1321.
    9. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    10. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    11. Parikh, Pratik J. & Meller, Russell D., 2010. "A travel-time model for a person-onboard order picking system," European Journal of Operational Research, Elsevier, vol. 200(2), pages 385-394, January.
    12. Theys, Christophe & Bräysy, Olli & Dullaert, Wout & Raa, Birger, 2010. "Using a TSP heuristic for routing order pickers in warehouses," European Journal of Operational Research, Elsevier, vol. 200(3), pages 755-763, February.
    13. Chew, Ek Peng & Tang, Loon Ching, 1999. "Travel time analysis for general item location assignment in a rectangular warehouse," European Journal of Operational Research, Elsevier, vol. 112(3), pages 582-597, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    2. Rao, Subir S. & Adil, Gajendra K. & Venkitasubramony, Rakesh, 2020. "On the expectation of the largest gap in a warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    3. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    4. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    5. Li Zhou & Huwei Liu & Junhui Zhao & Fan Wang & Jianglong Yang, 2022. "Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    6. Chen, Wanying (Amanda) & De Koster, René B.M. & Gong, Yeming, 2021. "Performance evaluation of automated medicine delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    7. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    8. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    9. Vichitkunakorn, Panupong & Emde, Simon & Masae, Makusee & Glock, Christoph H. & Grosse, Eric H., 2024. "Locating charging stations and routing drones for efficient automated stocktaking," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1129-1145.
    10. Miao He & Zailin Guan & Guoxiang Hou & Xiaofen Wang, 2024. "A Novel Parts-to-Picker System with Buffer Racks and Access Racks in Flexible Warehousing Systems," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    11. Olga Porro & Francesc Pardo-Bosch & Núria Agell & Mónica Sánchez, 2020. "Understanding Location Decisions of Energy Multinational Enterprises within the European Smart Cities’ Context: An Integrated AHP and Extended Fuzzy Linguistic TOPSIS Method," Energies, MDPI, vol. 13(10), pages 1-29, May.
    12. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    13. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    15. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris & de Koster, René B.M., 2019. "Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 47-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    2. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    3. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    4. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    5. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    6. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    8. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    9. Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    11. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    12. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    14. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris & de Koster, René B.M., 2019. "Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 47-73.
    15. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    16. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    17. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    18. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    19. Subir S. Rao & Gajendra K. Adil, 2017. "Analytical models for a new turnover-based hybrid storage policy in unit-load warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 327-346, January.
    20. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:102:y:2017:i:c:p:38-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.