IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v300y2022i3p937-952.html
   My bibliography  Save this article

Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand

Author

Listed:
  • Lamballais, T.
  • Merschformann, M.
  • Roy, D.
  • de Koster, M.B.M.
  • Azadeh, K.
  • Suhl, L.

Abstract

A Robotic Mobile Fulfillment System (RMFS) is an automated parts-to-picker material handling system, in which robots carry pods with products to the order pickers. It is particularly suitable for e-commerce order fulfillment and can quickly and frequently reallocate workers and robots across the picking and replenishment processes to respond to strong demand fluctuations. More resources for the picking process means lower customer wait times, whereas more resources for the replenishment process means a higher inventory level and product availability. This paper models the RMFS as a queuing network and integrates it within a Markov decision process (MDP), that aims to allocate robots across the pick and replenishment processes during both high and low demand periods, based on the workloads in these processes. We extend existing MDP models with one resource type and one process to an MDP model for two resources types and two processes. The policies derived from the model are compared with benchmark policies from practice. The results show that the length of the peak demand phase and the height of the peak affects the optimal policy choice. In addition, policies that continually reallocate resources based on the workload outperform benchmark policies from practice. Moreover, if the number of robots is limited, continual resource reallocation can reduce costs sharply. The results show that optimal dynamic policies can reduce the cost by up to 52.18% on average compared to optimal fixed policies.

Suggested Citation

  • Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
  • Handle: RePEc:eee:ejores:v:300:y:2022:i:3:p:937-952
    DOI: 10.1016/j.ejor.2021.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721007608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronald Buitenhek & Geert‐Jan van Houtum & Henk Zijm, 2000. "AMVA‐based solution procedures for open queueing networks with population constraints," Annals of Operations Research, Springer, vol. 93(1), pages 15-40, January.
    2. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    3. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," European Journal of Operational Research, Elsevier, vol. 262(2), pages 550-562.
    4. Van Nieuwenhuyse, Inneke & de Koster, René B.M., 2009. "Evaluating order throughput time in 2-block warehouses with time window batching," International Journal of Production Economics, Elsevier, vol. 121(2), pages 654-664, October.
    5. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    6. Xiaoming Li, 2013. "Managing Dynamic Inventory Systems with Product Returns: A Markov Decision Process," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 577-592, May.
    7. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    8. Rong Yuan & Stephen C. Graves & Tolga Cezik, 2019. "Velocity‐Based Storage Assignment in Semi‐Automated Storage Systems," Production and Operations Management, Production and Operations Management Society, vol. 28(2), pages 354-373, February.
    9. Tim Lamballais Tessensohn & Debjit Roy & René B.M. De Koster, 2020. "Inventory allocation in robotic mobile fulfillment systems," IISE Transactions, Taylor & Francis Journals, vol. 52(1), pages 1-17, January.
    10. Bipan Zou & Yeming Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," Post-Print hal-02312005, HAL.
    11. T W Archibald, 2007. "Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 948-956, July.
    12. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    13. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2011. "The cost of using stationary inventory policies when demand is non-stationary," Omega, Elsevier, vol. 39(4), pages 410-415, August.
    14. Seidscher, Arkadi & Minner, Stefan, 2013. "A Semi-Markov decision problem for proactive and reactive transshipments between multiple warehouses," European Journal of Operational Research, Elsevier, vol. 230(1), pages 42-52.
    15. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    16. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    17. Debjit Roy, 2016. "Semi-open queuing networks: a review of stochastic models, solution methods and new research areas," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1735-1752, March.
    18. Agatz, Niels A.H. & Fleischmann, Moritz & van Nunen, Jo A.E.E., 2008. "E-fulfillment and multi-channel distribution - A review," European Journal of Operational Research, Elsevier, vol. 187(2), pages 339-356, June.
    19. Sanket Bhat & Ananth Krishnamurthy, 2016. "Interactive effects of seasonal-demand characteristics on manufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(10), pages 2951-2964, May.
    20. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    21. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Parts-to-picker based order processing in a rack-moving mobile robots environment," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 85774, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    23. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    24. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," Post-Print hal-02312110, HAL.
    25. Sanket Bhat & Ananth Krishnamurthy, 2015. "Value of capacity flexibility in manufacturing systems with seasonal demands," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 693-714, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Dudin & Alexander Dudin & Rosanna Manzo & Luigi Rarità, 2024. "Analysis of Semi-open Queueing Network with Correlated Arrival Process and Multi-server Nodes," SN Operations Research Forum, Springer, vol. 5(4), pages 1-29, December.
    2. Debjit Roy & Eirini Spiliotopoulou & Jelle de Vries, 2022. "Restaurant analytics: Emerging practice and research opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3687-3709, October.
    3. Kumar, Suryakant & Sheu, Jiuh-Biing & Kundu, Tanmoy, 2023. "Planning a parts-to-picker order picking system with consideration of the impact of perceived workload," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    4. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    5. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    6. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    7. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    8. Ding, Tianrong & Zhang, Yuankai & Wang, Zheng & Hu, Xiangpei, 2024. "Velocity-based rack storage location assignment for the unidirectional robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    9. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    11. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    13. Sonja Otten & Ruslan Krenzler & Lin Xie & Hans Daduna & Karsten Kruse, 2022. "Analysis of semi-open queueing networks using lost customers approximation with an application to robotic mobile fulfilment systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 603-648, June.
    14. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    15. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    16. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    17. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "A column generation driven heuristic for order-scheduling and rack-sequencing in robotic mobile fulfillment systems," Omega, Elsevier, vol. 120(C).
    18. Xie, Lin & Thieme, Nils & Krenzler, Ruslan & Li, Hanyi, 2021. "Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 288(1), pages 80-97.
    19. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    20. Jianming Cai & Xiaokang Li & Yue Liang & Shan Ouyang, 2021. "Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 13(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:300:y:2022:i:3:p:937-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.