IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v96y2017icp92-112.html
   My bibliography  Save this article

Analyzing the performance of distributed conflict resolution among autonomous vehicles

Author

Listed:
  • Romani de Oliveira, Ítalo

Abstract

This paper presents a study on how cooperation versus non-cooperation, and centralization versus distribution impact the performance of a traffic game of autonomous vehicles. A model using a particle-based, Lagrange representation, is developed, instead of an Eulerian, flow-based one, usual in routing problems of the game-theoretical approach. This choice allows representation of phenomena such as fuel exhaustion, vehicle collision, and wave propagation. The elements necessary to represent interactions in a multi-agent transportation system are defined, including a distributed, priority-based resource allocation protocol, where resources are nodes and links in a spatial network and individual routing strategies are performed. A fuel consumption dynamics is developed in order to account for energy cost and vehicles having limited range. The analysis shows that only the scenarios with cooperative resource allocation can achieve optimal values of either collective cost or equity coefficient, corresponding respectively to the centralized and to the distributed cases.

Suggested Citation

  • Romani de Oliveira, Ítalo, 2017. "Analyzing the performance of distributed conflict resolution among autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 92-112.
  • Handle: RePEc:eee:transb:v:96:y:2017:i:c:p:92-112
    DOI: 10.1016/j.trb.2016.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516304854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Schummer & Rakesh V. Vohra, 2013. "Assignment of Arrival Slots," American Economic Journal: Microeconomics, American Economic Association, vol. 5(2), pages 164-185, May.
    2. Boyce, D. E. & Janson, B. N., 1980. "A discrete transportation network design problem with combined trip distribution and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 147-154.
    3. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    4. Rinaldi, Marco & Tampère, Chris M.J., 2015. "An extended coordinate descent method for distributed anticipatory network traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 107-131.
    5. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    6. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    7. Murça, Mayara Condé Rocha & Müller, Carlos, 2015. "Control-based optimization approach for aircraft scheduling in a terminal area with alternative arrival routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 96-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
    2. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    3. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murça, Mayara Condé Rocha, 2018. "Collaborative air traffic flow management: Incorporating airline preferences in rerouting decisions," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 97-107.
    2. Wei, P. & Cao, Y. & Sun, D., 2013. "Total unimodularity and decomposition method for large-scale air traffic cell transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 1-16.
    3. Sun, D. & Clinet, A. & Bayen, A.M., 2011. "A dual decomposition method for sector capacity constrained traffic flow optimization," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 880-902, July.
    4. Chen, J. & Chen, L. & Sun, D., 2017. "Air traffic flow management under uncertainty using chance-constrained optimization," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 124-141.
    5. Guo, Yechenfeng & Hu, Minghua & Zou, Bo & Hansen, Mark & Zhang, Ying & Xie, Hua, 2022. "Air Traffic Flow Management Integrating Separation Management and Ground Holding: An Efficiency-Equity Bi-objective Perspective," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 394-423.
    6. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    7. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    8. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    9. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    10. Taisuke Otsu & Martin Pesendorfer & Yuya Sasaki & Yuya Takahashi, 2022. "Estimation Of (Static Or Dynamic) Games Under Equilibrium Multiplicity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1165-1188, August.
    11. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    12. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    13. Aygün, Orhan & Turhan, Bertan, 2021. "How to De-reserve Reserves," ISU General Staff Papers 202103100800001123, Iowa State University, Department of Economics.
    14. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    15. Parag A. Pathak & Alex Rees-Jones & Tayfun Sönmez, 2025. "Immigration Lottery Design: Engineered and Coincidental Consequences of H-1B Reforms," The Review of Economics and Statistics, MIT Press, vol. 107(1), pages 1-13, January.
    16. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    17. , & ,, 2013. "Selection-free predictions in global games with endogenous information and multiple equilibria," Theoretical Economics, Econometric Society, vol. 8(3), September.
    18. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    19. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    20. Kai Huschelrath & Kathrin Muller, 2014. "The Value Of Bluer Skies. – How Much Do Consumers Gain From Entry By Jetblue Airways In Long-Haul U.S. Airline Markets?," Articles, International Journal of Transport Economics, vol. 41(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:96:y:2017:i:c:p:92-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.