IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v78y2015icp301-317.html
   My bibliography  Save this article

Airline competition and market frequency: A comparison of the s-curve and schedule delay models

Author

Listed:
  • Hansen, Mark
  • Liu, Yi

Abstract

We compare two common ways of incorporating service frequency into models of airline competition. One is based on the so called s-curve, in which, all else equal, market shares are determined by frequency shares. The other is based on schedule delay—the time difference between when travelers wish to travel and when flights are available. We develop competition models that differ only with regard to which of the above approaches is used to capture the effect of frequency. The demand side of both models is an approximation of a nested logit model which yields endogenous travel demand by including not traveling in the choice set. We find symmetric competitive equilibrium for both models analytically, and compare their predictions concerning market frequency with empirical evidence. In contrast to the s-curve model, the schedule delay model depicts a more plausible relationship between market share and frequency share and accurately predicts observed patterns of supply side behavior. Moreover, the predictions from both models are largely the same if we employ numerical versions of the model that capture real-world aspects of competition. We also find that, for either model, the relationship between airline frequency and market traffic is the same whether frequency is determined by competitive equilibrium, social optimality, or social optimality with a break-even constraint.

Suggested Citation

  • Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
  • Handle: RePEc:eee:transb:v:78:y:2015:i:c:p:301-317
    DOI: 10.1016/j.trb.2015.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Wei & Mark Hansen, 2003. "Cost Economics of Aircraft Size," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 279-296, May.
    2. Anderson, James E & Kraus, Marvin, 1981. "Quality of Service and the Demand for Air Travel," The Review of Economics and Statistics, MIT Press, vol. 63(4), pages 533-540, November.
    3. Vikrant Vaze & Cynthia Barnhart, 2015. "The Price of Airline Frequency Competition," Springer Series in Reliability Engineering, in: Kjell Hausken & Jun Zhuang (ed.), Game Theoretic Analysis of Congestion, Safety and Security, edition 127, pages 173-217, Springer.
    4. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    5. Swan, William M. & Adler, Nicole, 2006. "Aircraft trip cost parameters: A function of stage length and seat capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 105-115, March.
    6. Gregory Dobson & Phillip J. Lederer, 1993. "Airline Scheduling and Routing in a Hub-and-Spoke System," Transportation Science, INFORMS, vol. 27(3), pages 281-297, August.
    7. Brueckner, Jan K. & Girvin, Raquel, 2008. "Airport noise regulation, airline service quality, and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 19-37, January.
    8. Schipper, Youdi & Rietveld, Piet & Nijkamp, Peter, 2003. "Airline deregulation and external costs: a welfare analysis," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 699-718, September.
    9. Jan Brueckner & Ricardo Flores-Fillol, 2007. "Airline Schedule Competition," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 30(3), pages 161-177, May.
    10. Hsiao, Chieh-Yu & Hansen, Mark, 2011. "A passenger demand model for air transportation in a hub-and-spoke network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1112-1125.
    11. Panzar, John C, 1979. "Equilibrium and Welfare in Unregulated Airline Markets," American Economic Review, American Economic Association, vol. 69(2), pages 92-95, May.
    12. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    13. Eric Pels & Peter Nijkamp & Piet Rietveld, 2001. "Airport and Airline Choice in a Multiple Airport Region: An Empirical Analysis for the San Francisco Bay Area," Regional Studies, Taylor & Francis Journals, vol. 35(1), pages 1-9.
    14. Adler, Nicole & Pels, Eric & Nash, Chris, 2010. "High-speed rail and air transport competition: Game engineering as tool for cost-benefit analysis," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 812-833, August.
    15. Vikrant Vaze & Cynthia Barnhart, 2012. "Modeling Airline Frequency Competition for Airport Congestion Mitigation," Transportation Science, INFORMS, vol. 46(4), pages 512-535, November.
    16. Kjell Hausken & Jun Zhuang (ed.), 2015. "Game Theoretic Analysis of Congestion, Safety and Security," Springer Series in Reliability Engineering, Springer, edition 127, number 978-3-319-11674-7, September.
    17. Yan, Jia & Winston, Clifford, 2014. "Can private airport competition improve runway pricing? The case of San Francisco Bay area airports," Journal of Public Economics, Elsevier, vol. 115(C), pages 146-157.
    18. Kjell Hausken & Jun Zhuang (ed.), 2015. "Game Theoretic Analysis of Congestion, Safety and Security," Springer Series in Reliability Engineering, Springer, edition 127, number 978-3-319-13009-5, September.
    19. Kenneth Button & Jonathan Drexler, 2005. "Recovering Costs by Increasing Market Share: An Empirical Critique of the S-Curve," Journal of Transport Economics and Policy, University of Bath, vol. 39(3), pages 391-410, September.
    20. Zou, Bo & Hansen, Mark, 2014. "Flight delay impact on airfare and flight frequency: A comprehensive assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 54-74.
    21. Steven Berry & Panle Jia, 2010. "Tracing the Woes: An Empirical Analysis of the Airline Industry," American Economic Journal: Microeconomics, American Economic Association, vol. 2(3), pages 1-43, August.
    22. Wei, Wenbin & Hansen, Mark, 2007. "Airlines' competition in aircraft size and service frequency in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 409-424, July.
    23. Wei, Wenbin & Hansen, Mark, 2005. "Impact of aircraft size and seat availability on airlines' demand and market share in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 315-327, July.
    24. Hansen, Mark, 1990. "Airline competition in a hub-dominated environment: An application of noncooperative game theory," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 27-43, February.
    25. Zou, Bo & Hansen, Mark, 2012. "Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 965-980.
    26. Liu, Yi & Hansen, Mark & Zou, Bo, 2013. "Aircraft gauge differences between the US and Europe and their operational implications," Journal of Air Transport Management, Elsevier, vol. 29(C), pages 1-10.
    27. Gerard De Jong & Andrew Daly & Marits Pieters & Toon Van der Hoorn, 2005. "The logsum as an evaluation measure - review of the literature and new results," ERSA conference papers ersa05p158, European Regional Science Association.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adler, Nicole & Andreana, Gianmarco, 2024. "Aiding airlines for the benefit of whom? An applied game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 314(2), pages 552-564.
    2. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    3. Alderighi, Marco & Gaggero, Alberto A., 2018. "Flight cancellations and airline alliances: Empirical evidence from Europe," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 90-101.
    4. Vaze, Vikrant & Luo, Tian & Harder, Reed, 2017. "Impacts of airline mergers on passenger welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 130-154.
    5. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    6. Dixit, Aasheesh & Kumar, Patanjal & Jakhar, Suresh Kumar, 2022. "Effectiveness of carbon tax and congestion cost in improving the airline industry greening level and welfare: A case of two competing airlines," Journal of Air Transport Management, Elsevier, vol. 100(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    2. Vikrant Vaze & Cynthia Barnhart, 2012. "Modeling Airline Frequency Competition for Airport Congestion Mitigation," Transportation Science, INFORMS, vol. 46(4), pages 512-535, November.
    3. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    4. Wang, Chun-Han & Zhang, Wenzhu & Dai, Yue & Lee, Yu-Ching, 2022. "Frequency competition among airlines on coordinated airports network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 484-495.
    5. Zou, Bo & Hansen, Mark, 2014. "Flight delay impact on airfare and flight frequency: A comprehensive assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 54-74.
    6. Adler, Nicole & Andreana, Gianmarco, 2024. "Aiding airlines for the benefit of whom? An applied game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 314(2), pages 552-564.
    7. Abdelghany, Ahmed & Abdelghany, Khaled & Azadian, Farshid, 2023. "The airline seat capacity allocation problem: An expected marginal profit approach," Journal of Air Transport Management, Elsevier, vol. 112(C).
    8. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    9. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    10. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    11. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    12. Fageda, Xavier & Fioravanti, Reinaldo & Ricover, Andy & Café, Eduardo & Ansaldo, Mariano, 2023. "Econometric analysis of the determinants of air cargo services supply in Latin America and the Caribbean," Transport Policy, Elsevier, vol. 135(C), pages 33-44.
    13. Zakharenko, Roman & Luttmann, Alexander, 2023. "Downsizing the jet: A forecast of economic effects of increased automation in aviation," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 25-47.
    14. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    15. Wang, Chunan & Wang, Xiaoyu, 2019. "Why do airlines prefer multi-hub networks?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 56-74.
    16. Hsiao, Chieh-Yu & Hansen, Mark, 2011. "A passenger demand model for air transportation in a hub-and-spoke network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1112-1125.
    17. Valido, Jorge & Socorro, M. Pilar & Medda, Francesca, 2020. "Airport capacity and entry deterrence: Low cost versus full service airlines," Economics of Transportation, Elsevier, vol. 22(C).
    18. Zou, Bo & Hansen, Mark, 2012. "Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 965-980.
    19. Xuanyu Yue & Julie Byrne, 2021. "Linking the Determinants of Air Passenger Flows and Aviation Related Carbon Emissions: A European Study," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    20. Saraswati, Batari & Hanaoka, Shinya, 2014. "Airport–airline cooperation under commercial revenue sharing agreements: A network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 17-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:78:y:2015:i:c:p:301-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.