IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i6p965-980.html
   My bibliography  Save this article

Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium

Author

Listed:
  • Zou, Bo
  • Hansen, Mark

Abstract

This paper analyzes benefits from aviation infrastructure investment under competitive supply-demand equilibrium. The analysis recognizes that, in the air transportation system where economies of density is an inherent characteristic, capacity change would trigger a complicated set of adjustment of and interplay among passenger demand, air fare, flight frequency, aircraft size, and flight delays, leading to an equilibrium shift. An analytical model that incorporates these elements is developed. The results from comparative static analysis show that capacity constraint suppresses demand, reduces flight frequency, and increases passenger generalized cost. Our numerical analysis further reveals that, by switching to larger aircraft size, airlines manage to offset part of the delay effect on unit operating cost, and charge passengers lower fare. With higher capacity, airlines tend to raise both fare and frequency while decreasing aircraft size. More demand emerges in the market, with reduced generalized cost for each traveler. The marginal benefit brought by capacity expansion diminishes as the capacity-demand imbalance becomes less severe. Existing passengers in the market receive most of the benefit, followed by airlines. The welfare gains from induced demand are much smaller. The equilibrium approach yields more plausible investment benefit estimates than does the conventional method. In particular, when forecasting future demand the equilibrium approach is capable of preventing the occurrence of excessive high delays.

Suggested Citation

  • Zou, Bo & Hansen, Mark, 2012. "Flight delays, capacity investment and social welfare under air transport supply-demand equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 965-980.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:6:p:965-980
    DOI: 10.1016/j.tra.2012.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641200033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    2. Brueckner, Jan K. & Girvin, Raquel, 2008. "Airport noise regulation, airline service quality, and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 19-37, January.
    3. Schipper, Youdi & Rietveld, Piet & Nijkamp, Peter, 2003. "Airline deregulation and external costs: a welfare analysis," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 699-718, September.
    4. Richard, Oliver, 2003. "Flight frequency and mergers in airline markets," International Journal of Industrial Organization, Elsevier, vol. 21(6), pages 907-922, June.
    5. Jan Brueckner & Ricardo Flores-Fillol, 2007. "Airline Schedule Competition," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 30(3), pages 161-177, May.
    6. Flores-Fillol, Ricardo, 2010. "Congested hubs," Transportation Research Part B: Methodological, Elsevier, vol. 44(3), pages 358-370, March.
    7. Hansen, Mark M. & Gillen, David & Djafarian-Tehrani, Reza, 2001. "Aviation infrastructure performance and airline cost: a statistical cost estimation approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(1), pages 1-23, March.
    8. Morrison, Steven A. & Winston, Clifford, 2008. "The effect of FAA expenditures on air travel delays," Journal of Urban Economics, Elsevier, vol. 63(2), pages 669-678, March.
    9. Hansen, Mark, 2002. "Micro-level analysis of airport delay externalities using deterministic queuing models: a case study," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 73-87.
    10. Turnovsky, Stephen J & Shalit, Haim & Schmitz, Andrew, 1980. "Consumer's Surplus, Price Instability, and Consumer Welfare," Econometrica, Econometric Society, vol. 48(1), pages 135-152, January.
    11. Hansen, Mark & Wei, Wenbin, 2006. "Multivariate analysis of the impacts of NAS investments: A case study of a capacity expansion at Dallas-Fort Worth Airport," Journal of Air Transport Management, Elsevier, vol. 12(5), pages 227-235.
    12. Jorge-Calderón, J.D., 1997. "A demand model for scheduled airline services on international European routes," Journal of Air Transport Management, Elsevier, vol. 3(1), pages 23-35.
    13. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    14. Brueckner, Jan K & Spiller, Pablo T, 1994. "Economies of Traffic Density in the Deregulated Airline Industry," Journal of Law and Economics, University of Chicago Press, vol. 37(2), pages 379-415, October.
    15. Steven A. Morrison & Clifford Winston, 2007. "Another Look at Airport Congestion Pricing," American Economic Review, American Economic Association, vol. 97(5), pages 1970-1977, December.
    16. Zhang, Yimin, 2010. "Network structure and capacity requirement: The case of China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 189-197, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Feng & Wu, Xu & Cao, Chengxuan, 2021. "High-speed rail and air transport competition under high flight delay conditions in China: A case study of the Beijing-Shanghai corridor," Utilities Policy, Elsevier, vol. 71(C).
    2. Limon Barua & Bo Zou & Yan Zhou & Yulin Liu, 2023. "Modeling household online shopping demand in the U.S.: a machine learning approach and comparative investigation between 2009 and 2017," Transportation, Springer, vol. 50(2), pages 437-476, April.
    3. Seabra, Fernando & Valente, Amir Mattar & Silva, Leandro R. & Assis, Rafaella & Acordi, Carla & Marcon, Aline Filéti & Bauer, Martina Matte, 2020. "Determinants of Brazilian international flights: The role of hub-and-spoke and infrastructure variables," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Nicole Adler & Eran Hanany & Stef Proost, 2022. "Competition in Congested Service Networks with Application to Air Traffic Control Provision in Europe," Management Science, INFORMS, vol. 68(4), pages 2751-2784, April.
    5. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    6. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    7. Weiwei Wu & Haoyu Zhang & Tao Feng & Frank Witlox, 2019. "A Network Modelling Approach to Flight Delay Propagation: Some Empirical Evidence from China," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    8. Santos, Miguel Gueifão & Antunes, António Pais, 2015. "Long-term evolution of airport networks: Optimization model and its application to the United States," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 17-46.
    9. Balliauw, Matteo & Onghena, Evy, 2020. "Expanding airport capacity of cities under uncertainty: Strategies to mitigate congestion," Journal of Air Transport Management, Elsevier, vol. 84(C).
    10. Sun, Long Long & Hu, Ya Peng & Zhu, Chen Ping, 2023. "Scaling invariance in domestic passenger flight delays in the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    11. Lin, Pei-Chun, 2023. "The propagation of European airports’ on-time performance and on-time flights via air connectivity prior to the Covid-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 109(C).
    12. Zou, Bo & Hansen, Mark, 2014. "Flight delay impact on airfare and flight frequency: A comprehensive assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 54-74.
    13. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    14. Ryerson, Megan S. & Hansen, Mark & Bonn, James, 2014. "Time to burn: Flight delay, terminal efficiency, and fuel consumption in the National Airspace System," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 286-298.
    15. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    16. Zheng, Hongfeng & Wang, Ziming & Zheng, Chuanpan & Wang, Yanjun & Fan, Xiaoliang & Cong, Wei & Hu, Minghua, 2024. "A graph multi-attention network for predicting airport delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    17. Kaukin, Andrey (Каукин, Андрей), 2018. "Diagnosis of the Growth Model of the Russian Air Transportation Market: Bottlenecks and Directions of Development [Диагностика Модели Роста Российского Рынка Авиаперевозок: Узкие Места И Направлени," Working Papers 061830, Russian Presidential Academy of National Economy and Public Administration.
    18. Mohammadian, Iman & Abareshi, Ahmad & Abbasi, Babak & Goh, Mark, 2019. "Airline capacity decisions under supply-demand equilibrium of Australia’s domestic aviation market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 108-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Anming & Czerny, Achim I., 2012. "Airports and airlines economics and policy: An interpretive review of recent research," Economics of Transportation, Elsevier, vol. 1(1), pages 15-34.
    2. Anming Zhang & Yimin Zhang & Joseph A. Clougherty, 2011. "Competition and Regulation in Air Transport," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 35, Edward Elgar Publishing.
    3. Swaroop, Prem & Zou, Bo & Ball, Michael O. & Hansen, Mark, 2012. "Do more US airports need slot controls? A welfare based approach to determine slot levels," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1239-1259.
    4. Lin, Ming Hsin & Zhang, Anming, 2016. "Hub congestion pricing: Discriminatory passenger charges," Economics of Transportation, Elsevier, vol. 5(C), pages 37-48.
    5. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    6. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    7. Liao, Weijun & Wang, Chunan, 2021. "Airline emissions charges and airline networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    8. Wang, Chunan & Wang, Xiaoyu, 2019. "Why do airlines prefer multi-hub networks?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 56-74.
    9. Kawamori, Tomohiko & Lin, Ming Hsin, 2013. "Airline mergers with low cost carriers," Economics of Transportation, Elsevier, vol. 2(2), pages 63-71.
    10. Fageda, Xavier & Flores-Fillol, Ricardo, 2012. "Air services on thin routes: Regional versus low-cost airlines," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 702-714.
    11. Chen, Jihui, 2024. "The pricing and quality effects of network structure choice: Evidence from American airlines’ international route cancellations," Journal of Air Transport Management, Elsevier, vol. 114(C).
    12. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    13. Fageda, Xavier & Flores-Fillol, Ricardo, 2012. "On the optimal distribution of traffic of network airlines," European Economic Review, Elsevier, vol. 56(6), pages 1164-1179.
    14. Alderighi, Marco & Gaggero, Alberto A. & Piga, Claudio A., 2015. "The effect of code-share agreements on the temporal profile of airline fares," Transportation Research Part A: Policy and Practice, Elsevier, vol. 79(C), pages 42-54.
    15. Zuidberg, Joost, 2014. "Identifying airline cost economies: An econometric analysis of the factors affecting aircraft operating costs," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 86-95.
    16. Xavier Fageda & Ricardo Flores-Fillol, 2010. "Technology, Business Models and Network Structure in the Airline Industry," Working Papers XREAP2010-14, Xarxa de Referència en Economia Aplicada (XREAP), revised Dec 2010.
    17. Lee, Kangoh, 2023. "Airline operational disruptions and loss-reduction investment," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    18. Yan, Jia & Fu, Xiaowen & Oum, Tae Hoon & Wang, Kun, 2019. "Airline horizontal mergers and productivity: Empirical evidence from a quasi-natural experiment in China," International Journal of Industrial Organization, Elsevier, vol. 62(C), pages 358-376.
    19. Kai Hüschelrath & Kathrin Müller, 2014. "Airline Networks, Mergers, and Consumer Welfare," Journal of Transport Economics and Policy, University of Bath, vol. 48(3), pages 385-407, September.
    20. Bilotkach, Volodymyr & Fageda, Xavier & Flores-Fillol, Ricardo, 2010. "Scheduled service versus personal transportation: The role of distance," Regional Science and Urban Economics, Elsevier, vol. 40(1), pages 60-72, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:6:p:965-980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.