IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v51y2013icp17-28.html
   My bibliography  Save this article

A model of pedestrians’ intended waiting times for street crossings at signalized intersections

Author

Listed:
  • Li, Baibing

Abstract

For the purposes of both traffic-light control and the design of roadway layouts, it is important to understand pedestrian street-crossing behavior because it is not only crucial for improving pedestrian safety but also helps to optimize vehicle flow. This paper explores the mechanism of pedestrian street crossings during the red-man phase of traffic light signals and proposes a model for pedestrians’ waiting times at signalized intersections. We start from a simplified scenario for a particular pedestrian under specific traffic conditions. Then we take into account the interaction between vehicles and pedestrians via statistical unconditioning. We show that this in general leads to a U-shaped distribution of the pedestrians’ intended waiting time. This U-shaped distribution characterizes the nature of pedestrian street-crossing behavior, showing that in general there are a large proportion of pedestrians who cross the street immediately after arriving at the crossing point, and a large proportion of pedestrians who are willing to wait for the entire red-man phase. The U-shaped distribution is shown to reduce to a J-shaped or L-shaped distribution for certain traffic scenarios. The proposed statistical model was applied to analyze real field data.

Suggested Citation

  • Li, Baibing, 2013. "A model of pedestrians’ intended waiting times for street crossings at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 17-28.
  • Handle: RePEc:eee:transb:v:51:y:2013:i:c:p:17-28
    DOI: 10.1016/j.trb.2013.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513000222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robin, Th. & Antonini, G. & Bierlaire, M. & Cruz, J., 2009. "Specification, estimation and validation of a pedestrian walking behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 36-56, January.
    2. Carl M. Harris, 1968. "The Pareto Distribution as a Queue Service Discipline," Operations Research, INFORMS, vol. 16(2), pages 307-313, April.
    3. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    4. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    5. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    6. Nancy L. Nihan & Gary A. Davis, 1989. "Application of Prediction-Error Minimization and Maximum Likelihood to Estimate Intersection O-D Matrices from Traffic Counts," Transportation Science, INFORMS, vol. 23(2), pages 77-90, May.
    7. Keegan, Owen & O'Mahony, Margaret, 2003. "Modifying pedestrian behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 889-901, December.
    8. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2004. "Dynamic user-optimal assignment in continuous time and space," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 571-592, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina MAKAROVA & Rifat KHABIBULLIN & Vadim MAVRIN & Eduard BELYAEV, 2016. "Simulation Modeling In Improving Pedestrians’ Safety At Non-Signalized Crosswalks," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 11(4), pages 139-150, December.
    2. Irina MAKAROVA & Ksenia SHUBENKOVA & Vadim MAVRIN & Polina BUYVOL, 2018. "Improving Safety On The Crosswalks With The Use Of Fuzzy Logic," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(1), pages 97-109, March.
    3. Sun, Qipeng & He, Chen & Wang, Yongjie & Liu, Hang & Ma, Fei & Wei, Xiao, 2022. "Reducing violation behaviors of pedestrians considering group interests of travelers at signalized crosswalk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    4. Xuan Feng, 2021. "Time and Cost Efficiency of Autonomous Vehicles in the Last-Mile Delivery: A UK Case," International Business Research, Canadian Center of Science and Education, vol. 14(3), pages 1-26, March.
    5. Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.
    6. Shunqiang Ye & Lu Wang & Kang Hao Cheong & Nenggang Xie, 2017. "Pedestrian Group-Crossing Behavior Modeling and Simulation Based on Multidimensional Dirty Faces Game," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    7. Anastasiadou, K. & Vougias, S., 2019. "“Smart” or “sustainably smart” urban road networks? The most important commercial street in Thessaloniki as a case study," Transport Policy, Elsevier, vol. 82(C), pages 18-25.
    8. Zhou, Zhuping & Cai, Yifei & Ke, Ruimin & Yang, Jiwei, 2017. "A collision avoidance model for two-pedestrian groups: Considering random avoidance patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 142-154.
    9. Li, Baibing, 2014. "A bilevel model for multivariate risk analysis of pedestrians’ crossing behavior at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 18-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    2. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
    3. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    4. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    5. Wang, Shuaian & Zhang, Wei & Qu, Xiaobo, 2018. "Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 318-335.
    6. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    7. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    8. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    9. Yuki Oyama, 2023. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes," Papers 2307.08646, arXiv.org.
    10. He, Mengchen & Wang, Qiao & Chen, Juan & Xu, Shiwei & Ma, Jian, 2023. "Modeling pedestrian walking behavior in the flow field with moving walkways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    11. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    12. Wu, Chengyuan & Yang, Liangze & Du, Jie & Pei, Xin & Wong, S.C., 2024. "Continuum dynamic traffic models with novel local route-choice strategies for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    13. Oyama, Yuki, 2024. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    14. Hänseler, Flurin S. & Lam, William H.K. & Bierlaire, Michel & Lederrey, Gael & Nikolić, Marija, 2017. "A dynamic network loading model for anisotropic and congested pedestrian flows," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 149-168.
    15. Jiang, Yanqun & Wong, S.C. & Ho, H.W. & Zhang, Peng & Liu, Ruxun & Sumalee, Agachai, 2011. "A dynamic traffic assignment model for a continuum transportation system," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 343-363, February.
    16. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    17. Jeongyun Kim & Sehyun Tak & Michel Bierlaire & Hwasoo Yeo, 2020. "Trajectory Data Analysis on the Spatial and Temporal Influence of Pedestrian Flow on Path Planning Decision," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    18. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    19. Sobhana, Karthika P. & Choubey, Nipun & Verma, Ashish, 2023. "Modelling and simulating the leader–follower behaviour of pedestrians in unidirectional flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    20. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:51:y:2013:i:c:p:17-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.