IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v65y2014icp18-30.html
   My bibliography  Save this article

A bilevel model for multivariate risk analysis of pedestrians’ crossing behavior at signalized intersections

Author

Listed:
  • Li, Baibing

Abstract

Pedestrians who cross streets during the red-man phase of traffic light signals expose themselves to safety and health hazards and hence are considered to be at risk. Pedestrians’ street-crossing behavior is in general the outcome of interaction between pedestrians and vehicles: the gaps between vehicles provide an opportunity for pedestrians to cross the street, and pedestrians may or may not accept the street-crossing risk during the red-man phase. In this paper, we propose a multivariate method to investigate pedestrians’ risk exposure associated with unsafe crossings. The proposed method consists of two hierarchically interconnected generalized linear models that characterize two different facets of the unsafe crossing behavior. It gauges pedestrians’ attitudes toward risk-taking and also measures the impact of potential risk factors on pedestrians’ intended waiting times during the red-man phase of the traffic lights. A Bayesian approach with the data augmentation method is used to draw statistical inference for the parameters associated with risk exposure. The proposed method is illustrated using field traffic data.

Suggested Citation

  • Li, Baibing, 2014. "A bilevel model for multivariate risk analysis of pedestrians’ crossing behavior at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 18-30.
  • Handle: RePEc:eee:transb:v:65:y:2014:i:c:p:18-30
    DOI: 10.1016/j.trb.2014.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514000459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Baibing, 2011. "The multinomial logit model revisited: A semi-parametric approach in discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 461-473, March.
    2. Li, Baibing, 2013. "A model of pedestrians’ intended waiting times for street crossings at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 17-28.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    4. Yang, Jianguo & Deng, Wen & Wang, Jinmei & Li, Qingfeng & Wang, Zhaoan, 2006. "Modeling pedestrians' road crossing behavior in traffic system micro-simulation in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 280-290, March.
    5. Keegan, Owen & O'Mahony, Margaret, 2003. "Modifying pedestrian behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 889-901, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Chunhui & Ma, Wanjing & Lo, Hong K. & Yang, Xiaoguang, 2015. "Optimization of mid-block pedestrian crossing network with discrete demands," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 103-121.
    2. Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    2. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    3. Li, Baibing & Hensher, David A., 2017. "Risky weighting in discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 1-21.
    4. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    5. Mattsson, Lars-Göran & Weibull, Jörgen W. & Lindberg, Per Olov, 2014. "Extreme values, invariance and choice probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 81-95.
    6. Shi, Haolun & Yin, Guosheng, 2018. "Boosting conditional logit model," Journal of choice modelling, Elsevier, vol. 26(C), pages 48-63.
    7. Laura-Lucia Richter & Melvyn Weeks, 2016. "Flexible Mixed Logit with Posterior Analysis: Exploring Willingness-to-Pay for Grid Resilience," Cambridge Working Papers in Economics 1631, Faculty of Economics, University of Cambridge.
    8. Anastasiadou, K. & Vougias, S., 2019. "“Smart” or “sustainably smart” urban road networks? The most important commercial street in Thessaloniki as a case study," Transport Policy, Elsevier, vol. 82(C), pages 18-25.
    9. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    10. Egbendewe-Mondzozo, Aklesso & Higgins, Lindsey M. & Shaw, W. Douglass, 2010. "Red-light cameras at intersections: Estimating preferences using a stated choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 281-290, June.
    11. Shunqiang Ye & Lu Wang & Kang Hao Cheong & Nenggang Xie, 2017. "Pedestrian Group-Crossing Behavior Modeling and Simulation Based on Multidimensional Dirty Faces Game," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    12. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    13. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    14. Chikaraishi, Makoto & Nakayama, Shoichiro, 2016. "Discrete choice models with q-product random utilities," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 576-595.
    15. Brathwaite, Timothy & Walker, Joan L., 2018. "Asymmetric, closed-form, finite-parameter models of multinomial choice," Journal of choice modelling, Elsevier, vol. 29(C), pages 78-112.
    16. Ali SOLTANI & Samaneh MOZAYENI, 2013. "Factors Affecting The Citizen’S Trends To Use The Pedestrian Bridges In Iran," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 5(4), pages 5-18, December.
    17. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    18. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    19. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    20. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:65:y:2014:i:c:p:18-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.