IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v23y1989i2p77-90.html
   My bibliography  Save this article

Application of Prediction-Error Minimization and Maximum Likelihood to Estimate Intersection O-D Matrices from Traffic Counts

Author

Listed:
  • Nancy L. Nihan

    (University of Washington, Seattle, Washington 98185)

  • Gary A. Davis

    (University of Washington, Seattle, Washington 98185)

Abstract

The use of prediction error and maximum likelihood techniques to estimate intersection turning and through movement probabilities from entering and exiting counts is considered here. A maximum likelihood estimator for situations when full information on turning movement counts is available is derived and used as a component for a maximum likelihood algorithm which only requires entering and exiting counts. Several algorithms based on minimizing the error between observed and predicted exiting counts are also developed. Some actual traffic data are collected and used to develop realistic simulations for evaluating the various estimators. Generally, the maximum likelihood algorithm produced biased but more efficient estimates, while prediction error minimization approaches produced unbiased but less efficient estimates. Constraining the recursive version of the ordinary least-squares estimator to satisfy natural constraints did not affect its long run convergence properties.

Suggested Citation

  • Nancy L. Nihan & Gary A. Davis, 1989. "Application of Prediction-Error Minimization and Maximum Likelihood to Estimate Intersection O-D Matrices from Traffic Counts," Transportation Science, INFORMS, vol. 23(2), pages 77-90, May.
  • Handle: RePEc:inm:ortrsc:v:23:y:1989:i:2:p:77-90
    DOI: 10.1287/trsc.23.2.77
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.23.2.77
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.23.2.77?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Pei-Wei & Chang, Gang-Len, 2007. "A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 554-572, June.
    2. Wu, Jifeng & Chang, Gang-Len, 1996. "Estimation of time-varying origin-destination distributions with dynamic screenline flows," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 277-290, August.
    3. Li, Baibing & De Moor, Bart, 1999. "Recursive estimation based on the equality-constrained optimization for intersection origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 33(3), pages 203-214, April.
    4. Li, Baibing, 2013. "A model of pedestrians’ intended waiting times for street crossings at signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 17-28.
    5. Sherali, Hanif D. & Park, Taehyung, 2001. "Estimation of dynamic origin-destination trip tables for a general network," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 217-235, March.
    6. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    7. Garcia, Reinaldo C., 2003. "Implementing a Kalman Filtering Dynamic O-D Algorithm within Paramics- Analysing Quadstone Won Efforts for the Dynamic O-D Estimation Problem," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6vf61301, Institute of Transportation Studies, UC Berkeley.
    8. Guo, Jianhua & Liu, Yu & Li, Xiugang & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "Enhanced least square based dynamic OD matrix estimation using Radio Frequency Identification data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 27-40.
    9. Hazelton, Martin L. & Najim, Lara, 2024. "Using traffic assignment models to assist Bayesian inference for origin–destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    10. Garcia, Reinaldo C., 2002. "Implementing A Dynamic O-D Estimation Algorithm within the Microscopic Traffic Simulator Paramics," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0n62j6nq, Institute of Transportation Studies, UC Berkeley.
    11. Ritchie, Stephen & Sun, Carlos, 1998. "Section Related Measures of Traffic System Performance: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4sc0t3bv, Institute of Transportation Studies, UC Berkeley.
    12. Sherali, Hanif D. & Arora, Namita & Hobeika, Antoine G., 1997. "Parameter optimization methods for estimating dynamic origin-destination trip-tables," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 141-157, April.
    13. Li, Baibing & Moor, Bart De, 2002. "Dynamic identification of origin-destination matrices in the presence of incomplete observations," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 37-57, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:23:y:1989:i:2:p:77-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.