IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i2p430-446.html
   My bibliography  Save this article

Optimizing the demand captured by a railway system with a regular timetable

Author

Listed:
  • Cordone, Roberto
  • Redaelli, Francesco

Abstract

The railway systems in various European countries adopt regular timetables, in which the trains arrive and depart at constant intervals. In fact, their simple structure provides several advantages both to the passengers and to the management of the service. The design of such timetables has recently received a certain attention in the literature, but the standard model aims to optimize the service for a fixed demand. We relax this unrealistic assumption, taking into account the reciprocal influence between the quality of the timetable and the amount of transport demand captured by the railway. This results into a mixed-integer non linear model with a non-convex continuous relaxation. We solve it by a branch-and-bound algorithm based on a piecewise-linear overestimate of the objective function and a heuristic algorithm which iteratively applies the standard fixed-demand model and a demand-estimation model, feeding each one with data based on the solution obtained from the other one at the previous iteration. The computational results presented concern both random instances and a real-world regional network located in Northwestern Italy.

Suggested Citation

  • Cordone, Roberto & Redaelli, Francesco, 2011. "Optimizing the demand captured by a railway system with a regular timetable," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 430-446, February.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:2:p:430-446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(10)00104-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurjen S. Hooghiemstra & Leo G. Kroon & Michiel A. Odijk & Marc Salomon & Peter J. Zwaneveld, 1999. "Decision Support Systems Support the Search for Win-Win Solutions in Railway Network Design," Interfaces, INFORMS, vol. 29(2), pages 15-32, April.
    2. Leo G. Kroon & Leon W. P. Peeters, 2003. "A Variable Trip Time Model for Cyclic Railway Timetabling," Transportation Science, INFORMS, vol. 37(2), pages 198-212, May.
    3. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    4. Dollevoet, T.A.B. & Huisman, D. & Schmidt, M.E. & Schöbel, A., 2010. "Delay Management with Re-Routing of Passengers," Econometric Institute Research Papers EI 2010-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Nachtigall, Karl & Voget, Stefan, 1997. "Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks," European Journal of Operational Research, Elsevier, vol. 103(3), pages 610-627, December.
    6. Odijk, Michiel A., 1996. "A constraint generation algorithm for the construction of periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 455-464, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Zheng & Junhua Chen & Zhaocha Huang & Jianhao Zhu, 2022. "Joint Optimization of Multi-Cycle Timetable Considering Supply-to-Demand Relationship and Energy Consumption for Rail Express," Mathematics, MDPI, vol. 10(21), pages 1-29, November.
    2. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Li, Xiang & Lo, Hong K., 2014. "An energy-efficient scheduling and speed control approach for metro rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 73-89.
    4. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    5. Laurent Daudet & Frédéric Meunier, 2020. "Minimizing the waiting time for a one-way shuttle service," Journal of Scheduling, Springer, vol. 23(1), pages 95-115, February.
    6. Pacheco Paneque, Meritxell & Bierlaire, Michel & Gendron, Bernard & Sharif Azadeh, Shadi, 2021. "Integrating advanced discrete choice models in mixed integer linear optimization," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 26-49.
    7. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    8. Goerigk, Marc & Schmidt, Marie, 2017. "Line planning with user-optimal route choice," European Journal of Operational Research, Elsevier, vol. 259(2), pages 424-436.
    9. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    10. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    11. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.
    12. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    13. Barrena, Eva & Canca, David & Coelho, Leandro C. & Laporte, Gilbert, 2014. "Single-line rail rapid transit timetabling under dynamic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 134-150.
    14. Zhan, Shuguang & Wong, S.C. & Lo, S.M., 2020. "Social equity-based timetabling and ticket pricing for high-speed railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 165-186.
    15. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2018. "Optimizing headways for urban rail transit services using adaptive particle swarm algorithms," Public Transport, Springer, vol. 10(1), pages 23-62, May.
    16. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    17. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    18. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    19. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    20. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).
    21. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    22. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    23. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    2. Kroon, L.G. & Peeters, L.W.P. & Wagenaar, J.C. & Zuidwijk, R.A., 2012. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," ERIM Report Series Research in Management ERS-2012-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Leo G. Kroon & Leon W. P. Peeters & Joris C. Wagenaar & Rob A. Zuidwijk, 2014. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," Transportation Science, INFORMS, vol. 48(1), pages 136-154, February.
    4. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    5. Leo G. Kroon & Leon W. P. Peeters, 2003. "A Variable Trip Time Model for Cyclic Railway Timetabling," Transportation Science, INFORMS, vol. 37(2), pages 198-212, May.
    6. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    7. Kang, Liujiang & Wu, Jianjun & Sun, Huijun & Zhu, Xiaoning & Gao, Ziyou, 2015. "A case study on the coordination of last trains for the Beijing subway network," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 112-127.
    8. Zhou, Wenliang & Tian, Junli & Xue, Lijuan & Jiang, Min & Deng, Lianbo & Qin, Jin, 2017. "Multi-periodic train timetabling using a period-type-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 144-173.
    9. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    10. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    11. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    12. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    13. Eun Hak Lee & Inmook Lee & Shin-Hyung Cho & Seung-Young Kho & Dong-Kyu Kim, 2019. "A Travel Behavior-Based Skip-Stop Strategy Considering Train Choice Behaviors Based on Smartcard Data," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    14. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    15. Wenliang Zhou & Xiaorong You & Wenzhuang Fan, 2020. "A Mixed Integer Linear Programming Method for Simultaneous Multi-Periodic Train Timetabling and Routing on a High-Speed Rail Network," Sustainability, MDPI, vol. 12(3), pages 1-34, February.
    16. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    17. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    18. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Wu, Jianjun & Gao, Ziyou & Hu, Bin, 2019. "Last train timetabling optimization and bus bridging service management in urban railway transit networks," Omega, Elsevier, vol. 84(C), pages 31-44.
    19. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.
    20. Zeyu Wang & Leishan Zhou & Bin Guo & Xing Chen & Hanxiao Zhou, 2021. "An Efficient Hybrid Approach for Scheduling the Train Timetable for the Longer Distance High-Speed Railway," Sustainability, MDPI, vol. 13(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:2:p:430-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.