IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v146y2021icp26-49.html
   My bibliography  Save this article

Integrating advanced discrete choice models in mixed integer linear optimization

Author

Listed:
  • Pacheco Paneque, Meritxell
  • Bierlaire, Michel
  • Gendron, Bernard
  • Sharif Azadeh, Shadi

Abstract

In many transportation systems, a mismatch between the associated design and planning decisions and the demand is typically encountered. A tailored system is not only appealing to operators, which could have a better knowledge of their operational costs, but also to users, since they would benefit from an increase in the level of service and satisfaction. Hence, it is important to explicitly allow for the interactions between the two in the model governing the decisions of the system. Discrete choice models (DCM) provide a disaggregate demand representation that is able to capture the impact on the behavior of these decisions by taking into account the heterogeneity of tastes and preferences of the users, as well as subjective aspects related to attitudes or perceptions. Despite their advantages, the demand expressions derived from DCM are non-linear and non-convex in the explanatory variables, which restricts their integration in optimization problems. In this paper, we overcome the probabilistic nature of DCM by relying on simulation in order to specify the demand directly in terms of the utility functions (instead of the choice probabilities). This allows us to define a mixed-integer linear formulation that characterizes the preference structure and the behavioral assumption of DCM, which can then be embedded in a mixed-integer linear programming (MILP) model. We provide an overview of the extent of the framework with an illustrative MILP model that is designed to solve a profit maximization problem of a parking services operator. The obtained results show the potential of the proposed methodology to adjust supply-related decisions to the users.

Suggested Citation

  • Pacheco Paneque, Meritxell & Bierlaire, Michel & Gendron, Bernard & Sharif Azadeh, Shadi, 2021. "Integrating advanced discrete choice models in mixed integer linear optimization," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 26-49.
  • Handle: RePEc:eee:transb:v:146:y:2021:i:c:p:26-49
    DOI: 10.1016/j.trb.2021.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martine Labbé & Patrice Marcotte & Gilles Savard, 1998. "A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing," Management Science, INFORMS, vol. 44(12-Part-1), pages 1608-1622, December.
    2. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    3. Binder, Stefan & Maknoon, Yousef & Bierlaire, Michel, 2017. "Exogenous priority rules for the capacitated passenger assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 19-42.
    4. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong & Yang, Hai, 2012. "Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1273-1287.
    5. Cordone, Roberto & Redaelli, Francesco, 2011. "Optimizing the demand captured by a railway system with a regular timetable," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 430-446, February.
    6. Haase, Knut & Müller, Sven, 2013. "Management of school locations allowing for free school choice," Omega, Elsevier, vol. 41(5), pages 847-855.
    7. Ibeas, A. & dell’Olio, L. & Bordagaray, M. & Ortúzar, J. de D., 2014. "Modelling parking choices considering user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 41-49.
    8. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    9. Ljubić, Ivana & Moreno, Eduardo, 2018. "Outer approximation and submodular cuts for maximum capture facility location problems with random utilities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 46-56.
    10. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    11. de Palma, André & Proost, Stef & Seshadri, Ravi & Ben-Akiva, Moshe, 2018. "Congestion tolling - dollars versus tokens: A comparative analysis," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 261-280.
    12. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    13. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    14. François Gilbert & Patrice Marcotte & Gilles Savard, 2014. "Mixed-logit network pricing," Computational Optimization and Applications, Springer, vol. 57(1), pages 105-127, January.
    15. François Gilbert & Patrice Marcotte & Gilles Savard, 2015. "A Numerical Study of the Logit Network Pricing Problem," Transportation Science, INFORMS, vol. 49(3), pages 706-719, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roemer, Nils & Müller, Sven & Voigt, Guido, 2023. "A choice-based optimization approach for contracting in supply chains," European Journal of Operational Research, Elsevier, vol. 305(1), pages 271-286.
    2. Stefano Bortolomiol & Virginie Lurkin & Michel Bierlaire, 2022. "Price-based regulation of oligopolistic markets under discrete choice models of demand," Transportation, Springer, vol. 49(5), pages 1441-1463, October.
    3. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    4. John V. Colias & Stella Park & Elizabeth Horn, 2023. "Optimizing B2B Product Offers with Machine Learning, Mixed Logit, and Nonlinear Programming," Papers 2308.07830, arXiv.org.
    5. Mejía, Gonzalo & Aránguiz, Raúl & Espejo-Díaz, Julián Alberto & Granados-Rivera, Daniela & Mejía-Argueta, Christopher, 2023. "Can street markets be a sustainable strategy to mitigate food insecurity in emerging countries? Insights from a competitive facility location model," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    6. Steven Lamontagne & Margarida Carvalho & Emma Frejinger & Bernard Gendron & Miguel F. Anjos & Ribal Atallah, 2023. "Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1195-1213, September.
    7. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    8. Xiyuan Ren & Joseph Y. J. Chow & Prateek Bansal, 2023. "Estimating a k-modal nonparametric mixed logit model with market-level data," Papers 2309.13159, arXiv.org, revised Aug 2024.
    9. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    10. Eilertsen, Ulrik & Falck-Pedersen, Olav M. & Henriksen, Jone V. & Fagerholt, Kjetil & Pantuso, Giovanni, 2024. "Joint relocation and pricing in electric car-sharing systems," European Journal of Operational Research, Elsevier, vol. 315(2), pages 553-566.
    11. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    12. John V. Colias & Stella Park & Elizabeth Horn, 2021. "Optimizing B2B product offers with machine learning, mixed logit, and nonlinear programming," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(3), pages 157-172, September.
    13. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roemer, Nils & Müller, Sven & Voigt, Guido, 2023. "A choice-based optimization approach for contracting in supply chains," European Journal of Operational Research, Elsevier, vol. 305(1), pages 271-286.
    2. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    3. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    4. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
    5. Shaoning Han & Andrés Gómez & Oleg A. Prokopyev, 2022. "Fractional 0–1 programming and submodularity," Journal of Global Optimization, Springer, vol. 84(1), pages 77-93, September.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    7. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    8. Mai, Tien & Lodi, Andrea, 2020. "A multicut outer-approximation approach for competitive facility location under random utilities," European Journal of Operational Research, Elsevier, vol. 284(3), pages 874-881.
    9. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    10. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    11. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    12. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    13. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    14. Siyu Chen & Ravi Seshadri & Carlos Lima Azevedo & Arun P. Akkinepally & Renming Liu & Andrea Araldo & Yu Jiang & Moshe E. Ben-Akiva, 2021. "Market Design for Tradable Mobility Credits," Papers 2101.00669, arXiv.org, revised Sep 2022.
    15. Bruno De Borger & Amihai Glazer & Stef Proost, 2021. "Rational Drivers and the Choice Between Congestion Tolls and Tradeable Permits: A Political Economy Model," CESifo Working Paper Series 8821, CESifo.
    16. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    17. Jianqiang Wang & Wenlong Zhao & Chenglin Liu & Zhipeng Huang, 2023. "A System Optimization Approach for Trains’ Operation Plan with a Time Flexible Pricing Strategy for High-Speed Rail Corridors," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    18. Jacquet, Quentin & van Ackooij, Wim & Alasseur, Clémence & Gaubert, Stéphane, 2024. "Quadratic regularization of bilevel pricing problems and application to electricity retail markets," European Journal of Operational Research, Elsevier, vol. 313(3), pages 841-857.
    19. Steven Lamontagne & Margarida Carvalho & Emma Frejinger & Bernard Gendron & Miguel F. Anjos & Ribal Atallah, 2023. "Optimising Electric Vehicle Charging Station Placement Using Advanced Discrete Choice Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1195-1213, September.
    20. Ngan Ha Duong & Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint Location and Cost Planning in Maximum Capture Facility Location under Multiplicative Random Utility Maximization," Papers 2205.07345, arXiv.org, revised Feb 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:146:y:2021:i:c:p:26-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.