IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v23y2020i1d10.1007_s10951-019-00604-y.html
   My bibliography  Save this article

Minimizing the waiting time for a one-way shuttle service

Author

Listed:
  • Laurent Daudet

    (Université Paris Est)

  • Frédéric Meunier

    (Université Paris Est)

Abstract

Consider a terminal in which users arrive continuously over a finite period of time at a variable rate known in advance. A fleet of shuttles has to carry them over a fixed trip. What is the shuttle schedule that minimizes their waiting time? This is the question addressed in the present paper. We consider several versions that differ according to whether the shuttles come back to the terminal after their trip or not, and according to the objective function (maximum or average of the waiting times). We propose efficient algorithms with proven performance guarantees for almost all versions, and we completely solve the case where all users are present in the terminal from the beginning, a result which is already of some interest. The techniques used are of various types (convex optimization, shortest paths, ...). The paper ends with numerical experiments showing that most of our algorithms behave also well in practice.

Suggested Citation

  • Laurent Daudet & Frédéric Meunier, 2020. "Minimizing the waiting time for a one-way shuttle service," Journal of Scheduling, Springer, vol. 23(1), pages 95-115, February.
  • Handle: RePEc:spr:jsched:v:23:y:2020:i:1:d:10.1007_s10951-019-00604-y
    DOI: 10.1007/s10951-019-00604-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00604-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00604-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Kroon & Dennis Huisman & Erwin Abbink & Pieter-Jan Fioole & Matteo Fischetti & Gábor Maróti & Alexander Schrijver & Adri Steenbeek & Roelof Ybema, 2009. "The New Dutch Timetable: The OR Revolution," Interfaces, INFORMS, vol. 39(1), pages 6-17, February.
    2. Leo G. Kroon & Leon W. P. Peeters, 2003. "A Variable Trip Time Model for Cyclic Railway Timetabling," Transportation Science, INFORMS, vol. 37(2), pages 198-212, May.
    3. Cordone, Roberto & Redaelli, Francesco, 2011. "Optimizing the demand captured by a railway system with a regular timetable," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 430-446, February.
    4. Lineu C. Barbosa & Moshe Friedman, 1978. "Deterministic Inventory Lot Size Models--A General Root Law," Management Science, INFORMS, vol. 24(8), pages 819-826, April.
    5. Alberto Caprara & Matteo Fischetti & Paolo Toth, 2002. "Modeling and Solving the Train Timetabling Problem," Operations Research, INFORMS, vol. 50(5), pages 851-861, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    2. Barrena, Eva & Canca, David & Coelho, Leandro C. & Laporte, Gilbert, 2014. "Single-line rail rapid transit timetabling under dynamic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 134-150.
    3. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    4. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    5. Li, Feng & Sheu, Jiuh-Biing & Gao, Zi-You, 2014. "Deadlock analysis, prevention and train optimal travel mechanism in single-track railway system," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 385-414.
    6. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    7. Xueqiao Yu & Maoxiang Lang & Wenhui Zhang & Shiqi Li & Mingyue Zhang & Xiao Yu, 2019. "An Empirical Study on the Comprehensive Optimization Method of a Train Diagram of the China High Speed Railway Express," Sustainability, MDPI, vol. 11(7), pages 1-30, April.
    8. Wenliang Zhou & Xiaorong You & Wenzhuang Fan, 2020. "A Mixed Integer Linear Programming Method for Simultaneous Multi-Periodic Train Timetabling and Routing on a High-Speed Rail Network," Sustainability, MDPI, vol. 12(3), pages 1-34, February.
    9. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    10. Sartor, Giorgio & Mannino, Carlo & Nygreen, Thomas & Bach, Lukas, 2023. "A MILP model for quasi-periodic strategic train timetabling," Omega, Elsevier, vol. 116(C).
    11. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    12. Yu-Jun Zheng, 2018. "Emergency Train Scheduling on Chinese High-Speed Railways," Transportation Science, INFORMS, vol. 52(5), pages 1077-1091, October.
    13. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    14. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    15. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    16. Kroon, L.G. & Peeters, L.W.P. & Wagenaar, J.C. & Zuidwijk, R.A., 2012. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," ERIM Report Series Research in Management ERS-2012-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Han Zheng & Junhua Chen & Zhaocha Huang & Jianhao Zhu, 2022. "Joint Optimization of Multi-Cycle Timetable Considering Supply-to-Demand Relationship and Energy Consumption for Rail Express," Mathematics, MDPI, vol. 10(21), pages 1-29, November.
    18. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    19. Leo G. Kroon & Leon W. P. Peeters & Joris C. Wagenaar & Rob A. Zuidwijk, 2014. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," Transportation Science, INFORMS, vol. 48(1), pages 136-154, February.
    20. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:23:y:2020:i:1:d:10.1007_s10951-019-00604-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.