IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v481y2024ics009630032400393x.html
   My bibliography  Save this article

A rapid semi-analytical approach for modeling traffic flow on changing road conditions and its application

Author

Listed:
  • Chen, Jie
  • Cao, Jinde
  • Hu, Maobin

Abstract

Road traffic conditions exhibit spatial and temporal variations influenced by factors such as construction, speed limits, and accidents. Accurate and efficient modeling of vehicular flow on changing road conditions is crucial for understanding intricate traffic phenomena and analyzing dynamic characteristics in real-world scenarios. In this paper, we develop a rapid numerical approach that computes traffic flow solutions for roads divided into multiple sections with varying traffic conditions, utilizing the Lighthill-Whitham-Richards model as the mathematical framework. The key aspect of our approach lies in solving the flow at the dividing point between consecutive road sections with different traffic conditions. For the two-section road scenario, we integrate the Hamilton-Jacobi formulation of the traffic model with the triangular fundamental diagram, capturing the explicit relationship between flow and density. This integration allows us to derive the spatiotemporal solution for a single dividing point. By accounting for the dynamic interaction between adjacent dividing points, we extend the applicability of our approach to an arbitrary number of road sections based on a semi-analytic Lax-Hopf formula. Our semi-analytical method is distinguished by grid-free computing, reducing computational demands and ensuring exceptional simulation speed. Particularly noteworthy is the formulation's remarkable efficacy in handling the complexities of heterogeneous road traffic conditions, marked by dynamic variations in both time and space, surpassing traditional macroscopic traffic flow simulations. To demonstrate its effectiveness, we apply the proposed approach to an optimization example involving traffic signal timing in a complex road environment. Additionally, we showcase its predictive capabilities by efficiently evaluating the impact of traffic accidents on the surrounding traffic flow. This research provides valuable insights for traffic management, optimization, and decision-making, enabling the analysis of complex scenarios and facilitating the development of strategies to enhance traffic efficiency and safety.

Suggested Citation

  • Chen, Jie & Cao, Jinde & Hu, Maobin, 2024. "A rapid semi-analytical approach for modeling traffic flow on changing road conditions and its application," Applied Mathematics and Computation, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s009630032400393x
    DOI: 10.1016/j.amc.2024.128932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032400393X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    4. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: Solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 934-950, December.
    5. Carey, Malachy, 2021. "The cell transmission model with free-flow speeds varying over time or space," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 245-257.
    6. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
    7. Lele Zhang & Zhongqi Yuan & Li Yang & Zhiyuan Liu, 2020. "Recent developments in traffic flow modelling using macroscopic fundamental diagram," Transport Reviews, Taylor & Francis Journals, vol. 40(6), pages 689-710, November.
    8. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    9. Simoni, Michele D. & Claudel, Christian G., 2017. "A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 238-255.
    10. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    11. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    12. Lele Zhang & Zhongqi Yuan & Li Yang & Zhiyuan Liu, 2020. "Recent developments in traffic flow modeling using macroscopic fundamental diagram," Transport Reviews, Taylor & Francis Journals, vol. 40(4), pages 529-550, July.
    13. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    15. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    16. Tie-Qiao Tang & Yun-Peng Wang & Xiao-Bao Yang & Hai-Jun Huang, 2014. "A Multilane Traffic Flow Model Accounting for Lane Width, Lane-Changing and the Number of Lanes," Networks and Spatial Economics, Springer, vol. 14(3), pages 465-483, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    2. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    3. Simoni, Michele D. & Claudel, Christian G., 2017. "A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 238-255.
    4. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    5. Costeseque, Guillaume & Lebacque, Jean-Patrick, 2014. "A variational formulation for higher order macroscopic traffic flow models: Numerical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 112-133.
    6. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    7. Tumash, Liudmila & Canudas-de-Wit, Carlos & Delle Monache, Maria Laura, 2022. "Multi-directional continuous traffic model for large-scale urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 374-402.
    8. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    9. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    10. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    11. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    12. Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.
    13. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    14. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    15. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    16. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    17. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    18. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    19. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    20. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s009630032400393x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.