IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i6d10.1007_s11116-019-09999-1.html
   My bibliography  Save this article

Estimation of origin–destination matrices using link counts and partial path data

Author

Listed:
  • Mojtaba Rostami Nasab

    (Sharif University of Technology)

  • Yousef Shafahi

    (Sharif University of Technology)

Abstract

After several decades of work by several talented researchers, estimation of the origin–destination matrix using traffic data has remained very challenging. This paper presents a set of innovative methods for estimation of the origin–destination matrix of large-scale networks, using vehicle counts on links, partial path data obtained from an automated vehicle identification system, and combinations of both data. These innovative methods are used to solve three origin–destination matrix estimation models. The first model is an extension of Spiess’s model which uses vehicle count data while the second model is an extension of Jamali’s model and it uses partial path data. The third model is a multiobjective model which utilizes combinations of vehicle counts and partial path data. The methods were tested to estimate the origin–destination matrix of a large-scale network from Mashhad City with 163 traffic zones and 2093 links, and the results were compared with the conventional gradient-based algorithm. The results show that the innovative methods performed better as compared to the gradient-based algorithm.

Suggested Citation

  • Mojtaba Rostami Nasab & Yousef Shafahi, 2020. "Estimation of origin–destination matrices using link counts and partial path data," Transportation, Springer, vol. 47(6), pages 2923-2950, December.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:6:d:10.1007_s11116-019-09999-1
    DOI: 10.1007/s11116-019-09999-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-09999-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-019-09999-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    2. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    3. LeBlanc, Larry J. & Farhangian, Keyvan, 1982. "Selection of a trip table which reproduces observed link flows," Transportation Research Part B: Methodological, Elsevier, vol. 16(2), pages 83-88, April.
    4. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    5. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    6. Yasuo Asakura & Eiji Hato & Masuo Kashiwadani, 2000. "Origin-destination matrices estimation model using automatic vehicle identification data and its application to the Han-Shin expressway network," Transportation, Springer, vol. 27(4), pages 419-438, December.
    7. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Loslever, 2024. "Spatiotemporal Analysis of Traffic Data: Correspondence Analysis with Fuzzified Variables vs. Principal Component Analysis Using Weather and Gas Price as Extra Data," Networks and Spatial Economics, Springer, vol. 24(3), pages 531-563, September.
    2. Hui Zhang & Yu Cui & Jianmin Jia, 2024. "Mining Multimodal Travel Mobilities with Big Ridership Data: Comparative Analysis of Subways and Taxis," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    3. Adina Andra Triandafil & Alexandra Cristina Dinu & Florina Puie (Razvanta), 2021. "Destination Management Organizations: A Systematization Of Recent Literature With A Focus On New Research Trends," Cactus - The tourism journal for research, education, culture and soul, Bucharest University of Economic Studies, vol. 3(2), pages 56-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    3. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    4. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    5. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    6. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    7. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    8. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    9. Dongya Li & Wei Wang & De Zhao, 2022. "A Practical and Sustainable Approach to Determining the Deployment Priorities of Automatic Vehicle Identification Sensors," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    10. Enrique Castillo & Pilar Jiménez & José Menéndez & María Nogal, 2013. "A Bayesian method for estimating traffic flows based on plate scanning," Transportation, Springer, vol. 40(1), pages 173-201, January.
    11. Abderrahman Ait-Ali & Jonas Eliasson, 2022. "The value of additional data for public transport origin–destination matrix estimation," Public Transport, Springer, vol. 14(2), pages 419-439, June.
    12. Yu, Xinyao & Ma, Shoufeng & Zhu, Ning & Lam, William H.K. & Fu, Hao, 2023. "Ensuring the robustness of link flow observation systems in sensor failure events," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    13. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    14. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    15. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    16. Guido Gentile & Daniele Vigo, 2013. "Movement generation and trip distribution for freight demand modelling applied to city logistics," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-6.
    17. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    18. Yu Nie & H. Zhang, 2010. "A Relaxation Approach for Estimating Origin–Destination Trip Tables," Networks and Spatial Economics, Springer, vol. 10(1), pages 147-172, March.
    19. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    20. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:6:d:10.1007_s11116-019-09999-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.