IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v36y2012i1p39-44.html
   My bibliography  Save this article

On the evaluation of a public transportation network quality: Criteria validation methodology

Author

Listed:
  • Guedes, M. Carmo M.
  • Oliveira, Natália
  • Santiago, Sérgio
  • Smirnov, Georgi

Abstract

A public transportation network serves in adequate way a population if it evolves in time following the existent social reality. Changes made in order to improve service must be analyzed and evaluated. The introduction of modern technology to validate the fare card allowed a quick access to important, although incomplete, data. Databases with only the getting in validation information can be used to construct an origin–destination (OD) matrix, allowing a service quality analysis. Here it is presented a basic methodology to rigorously validate service quality criteria considering what might be interesting for the user. The quality analysis philosophy is the following. First, based on automatically gathered data, one reconstructs the origin–destination (OD) matrix, which contains information concerning the number of passengers traveling between zones of a certain region. The OD matrix is used to calculate some criteria characterizing the transportation network quality, such as traveling times, waiting times at a stop or transport occupation. The reconstructed OD matrix always contains errors, which cause errors in the criteria values. How significant are these errors? This question can be answered using our criteria validating methodology, which is based on statistical analysis. It has been implemented at the urban bus transport system of Porto, STCP, allowing the evaluation of the transportation network quality under a number of criteria and guaranteeing rigorous results.

Suggested Citation

  • Guedes, M. Carmo M. & Oliveira, Natália & Santiago, Sérgio & Smirnov, Georgi, 2012. "On the evaluation of a public transportation network quality: Criteria validation methodology," Research in Transportation Economics, Elsevier, vol. 36(1), pages 39-44.
  • Handle: RePEc:eee:retrec:v:36:y:2012:i:1:p:39-44
    DOI: 10.1016/j.retrec.2012.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885912000315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2012.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Codina, Esteve & Garcia, Ricardo & Marin, Angel, 2006. "New algorithmic alternatives for the O-D matrix adjustment problem on traffic networks," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1484-1500, December.
    2. Codina, Esteve & Barcelo, Jaume, 2004. "Adjustment of O-D trip matrices from observed volumes: An algorithmic approach based on conjugate directions," European Journal of Operational Research, Elsevier, vol. 155(3), pages 535-557, June.
    3. T. Abrahamsson, 1998. "Estimation of Origin-Destination Matrices Using Traffic Counts- A Literature Survey," Working Papers ir98021, International Institute for Applied Systems Analysis.
    4. Marc Gaudry, 2000. "The Four Approaches to Origin-Destination Matrix Estimation for Consideration by the MYSTIC Research Consortium," Working Papers of BETA 2000-10, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    5. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    6. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    7. Bielli, Maurizio & Boulmakoul, Azedine & Mouncif, Hicham, 2006. "Object modeling and path computation for multimodal travel systems," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1705-1730, December.
    8. Dial, Robert B., 2006. "An efficient algorithm for building min-path trees for all origins in a multi-class network," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 851-856, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    2. Foulds, Les R. & do Nascimento, Hugo A.D. & Calixto, Iacer C.A.C. & Hall, Bryon R. & Longo, Humberto, 2013. "A fuzzy set-based approach to origin–destination matrix estimation in urban traffic networks with imprecise data," European Journal of Operational Research, Elsevier, vol. 231(1), pages 190-201.
    3. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    4. Walpen, Jorgelina & Mancinelli, Elina M. & Lotito, Pablo A., 2015. "A heuristic for the OD matrix adjustment problem in a congested transport network," European Journal of Operational Research, Elsevier, vol. 242(3), pages 807-819.
    5. Abderrahman Ait-Ali & Jonas Eliasson, 2022. "The value of additional data for public transport origin–destination matrix estimation," Public Transport, Springer, vol. 14(2), pages 419-439, June.
    6. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    7. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    8. D'Acierno, Luca & Cartenì, Armando & Montella, Bruno, 2009. "Estimation of urban traffic conditions using an Automatic Vehicle Location (AVL) System," European Journal of Operational Research, Elsevier, vol. 196(2), pages 719-736, July.
    9. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    10. Tu Anh Trinh & Ducksu Seo & Unchong Kim & Thi Nhu Quynh Phan & Thi Hai Hang Nguyen, 2022. "Air Transport Centrality as a Driver of Sustainable Regional Growth: A Case of Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    11. Shahabi, Cyrus & Kim, Seon Ho, 2023. "Evaluating Accessibility of Los Angeles Metropolitan Area Using Data-Driven Time-Dependent Reachability Analysis," Institute of Transportation Studies, Working Paper Series qt7pm429tk, Institute of Transportation Studies, UC Davis.
    12. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    13. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & Héctor López-Ospina & Jhan Kevin Gil-Marin & John Jairo Posada-Henao, 2024. "Freight tour synthesis based on entropy maximization with fuzzy logic constraints," Transportation, Springer, vol. 51(6), pages 2323-2357, December.
    14. Duff, Thomas J. & Chong, Derek M. & Tolhurst, Kevin G., 2015. "Using discrete event simulation cellular automata models to determine multi-mode travel times and routes of terrestrial suppression resources to wildland fires," European Journal of Operational Research, Elsevier, vol. 241(3), pages 763-770.
    15. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    16. García-Ródenas, Ricardo & Marín, Ángel, 2009. "Simultaneous estimation of the origin-destination matrices and the parameters of a nested logit model in a combined network equilibrium model," European Journal of Operational Research, Elsevier, vol. 197(1), pages 320-331, August.
    17. S. Dempe & A. Zemkoho, 2012. "Bilevel road pricing: theoretical analysis and optimality conditions," Annals of Operations Research, Springer, vol. 196(1), pages 223-240, July.
    18. Määttä-Juntunen, Heidi & Antikainen, Harri & Kotavaara, Ossi & Rusanen, Jarmo, 2011. "Using GIS tools to estimate CO2 emissions related to the accessibility of large retail stores in the Oulu region, Finland," Journal of Transport Geography, Elsevier, vol. 19(2), pages 346-354.
    19. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    20. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & John Jairo Posada-Henao & Hector Lopez-Ospina & Jhan Kevin Gil-Marin, 2022. "Entropy-Based Transit Tour Synthesis Using Fuzzy Logic," Sustainability, MDPI, vol. 14(21), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:36:y:2012:i:1:p:39-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.