IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i6p497-518.html
   My bibliography  Save this article

Inferring origin-destination trip matrices with a decoupled GLS path flow estimator

Author

Listed:
  • Nie, Yu
  • Zhang, H.M.
  • Recker, W.W.

Abstract

Recently, path flow estimators (PFE) have been used for the estimation of origin-destination (O-D) matrices. This paper develops a formulation that incorporates a decoupled path flow estimator in a generalized least squares (GLS) framework. The approach seeks to solve a GLS problem that minimizes the sum of errors in traffic counts and O-D matrices based on an equilibrium assignment mapping derived exogenously from a K-shortest path ranking procedure. Solving the GLS-PFE inevitably involves non-invertible linear systems and non-negative constraints. A solution algorithm is designed to iteratively identify active constraints and solve linear systems by computing the pseudoinverse. A simplified version of this algorithm is further developed to improve its computational efficiency. The solution properties and computational efficiency of the two methods are tested and compared for small to mid-size networks. It is concluded that the simplified algorithm is efficient in solving the decoupled GLS-PFE problem for realistic size networks.

Suggested Citation

  • Nie, Yu & Zhang, H.M. & Recker, W.W., 2005. "Inferring origin-destination trip matrices with a decoupled GLS path flow estimator," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 497-518, July.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:6:p:497-518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00100-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, C. S. & Boyce, D. E., 1983. "A note on trip matrix estimation from link traffic count data," Transportation Research Part B: Methodological, Elsevier, vol. 17(3), pages 245-250, June.
    2. Brenninger-Göthe, Maud & Jörnsten, Kurt O. & Lundgren, Jan T., 1989. "Estimation of origin-destination matrices from traffic counts using multiobjective programming formulations," Transportation Research Part B: Methodological, Elsevier, vol. 23(4), pages 257-269, August.
    3. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    4. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    5. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1996. "Estimation of an origin-destination matrix with random link choice proportions: A statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 309-324, August.
    6. Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
    7. Sherali, Hanif D. & Sivanandan, R. & Hobeika, Antoine G., 1994. "A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes," Transportation Research Part B: Methodological, Elsevier, vol. 28(3), pages 213-233, June.
    8. Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Abareshi & Mehdi Zaferanieh & Mohammad Reza Safi, 2019. "Origin-Destination Matrix Estimation Problem in a Markov Chain Approach," Networks and Spatial Economics, Springer, vol. 19(4), pages 1069-1096, December.
    2. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    3. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    4. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Kumar, Anshuman Anjani & Kang, Jee Eun & Kwon, Changhyun & Nikolaev, Alexander, 2016. "Inferring origin-destination pairs and utility-based travel preferences of shared mobility system users in a multi-modal environment," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 270-291.
    6. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    7. Rindt, Craig R. & McNally, Michael G., 2007. "Field Deployment and Operational Test of an Agent-based, Multi-Jurisdictional Traffic Management System," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0nd2p0k4, Institute of Transportation Studies, UC Berkeley.
    8. Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
    9. Yu Nie & H. Zhang, 2010. "A Relaxation Approach for Estimating Origin–Destination Trip Tables," Networks and Spatial Economics, Springer, vol. 10(1), pages 147-172, March.
    10. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    11. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    12. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    13. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    14. Rindt, Craig R. & McNally, Michael G., 2009. "Cartesius and CTNET Integration and Field Operational Test," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1qn7q6zf, Institute of Transportation Studies, UC Berkeley.
    15. Hazelton, Martin L., 2010. "Bayesian inference for network-based models with a linear inverse structure," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 674-685, June.
    16. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    17. Ballis, Haris & Dimitriou, Loukas, 2020. "Revealing personal activities schedules from synthesizing multi-period origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 224-258.
    18. Li, Tao & Wan, Yan, 2019. "Estimating the geographic distribution of originating air travel demand using a bi-level optimization model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 267-291.
    19. Maryam Abareshi & Mehdi Zaferanieh & Bagher Keramati, 2017. "Path Flow Estimator in an Entropy Model Using a Nonlinear L-Shaped Algorithm," Networks and Spatial Economics, Springer, vol. 17(1), pages 293-315, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    2. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    3. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    4. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    5. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    6. Maryam Abareshi & Mehdi Zaferanieh & Bagher Keramati, 2017. "Path Flow Estimator in an Entropy Model Using a Nonlinear L-Shaped Algorithm," Networks and Spatial Economics, Springer, vol. 17(1), pages 293-315, March.
    7. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    8. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    9. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    10. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    11. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    12. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    13. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    14. Shen, Wei & Wynter, Laura, 2012. "A new one-level convex optimization approach for estimating origin–destination demand," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1535-1555.
    15. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
    16. Walpen, Jorgelina & Mancinelli, Elina M. & Lotito, Pablo A., 2015. "A heuristic for the OD matrix adjustment problem in a congested transport network," European Journal of Operational Research, Elsevier, vol. 242(3), pages 807-819.
    17. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1999. "Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 369-385, June.
    18. Codina, Esteve & Barcelo, Jaume, 2004. "Adjustment of O-D trip matrices from observed volumes: An algorithmic approach based on conjugate directions," European Journal of Operational Research, Elsevier, vol. 155(3), pages 535-557, June.
    19. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    20. Foulds, Les R. & do Nascimento, Hugo A.D. & Calixto, Iacer C.A.C. & Hall, Bryon R. & Longo, Humberto, 2013. "A fuzzy set-based approach to origin–destination matrix estimation in urban traffic networks with imprecise data," European Journal of Operational Research, Elsevier, vol. 231(1), pages 190-201.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:6:p:497-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.