Bayesian inference for network-based models with a linear inverse structure
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martin L. Hazelton & David P. Watling, 2004. "Computation of Equilibrium Distributions of Markov Traffic-Assignment Models," Transportation Science, INFORMS, vol. 38(3), pages 331-342, August.
- Hazelton, Martin L., 1998. "Some Remarks on Stochastic User Equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 101-108, February.
- Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
- Kurt Jörnsten & Stein W. Wallace, 1993. "Overcoming the (Apparent) Problem of Inconsistency in Origin-Destination Matrix Estimations," Transportation Science, INFORMS, vol. 27(4), pages 374-380, November.
- Gary A. Davis & Nancy L. Nihan, 1993. "Large Population Approximations of a General Stochastic Traffic Assignment Model," Operations Research, INFORMS, vol. 41(1), pages 169-178, February.
- Martin L. Hazelton, 2001. "Estimation of origin–destination trip rates in Leicester," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 423-433.
- Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
- Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
- G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
- Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
- Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
- Nie, Yu & Zhang, H.M. & Recker, W.W., 2005. "Inferring origin-destination trip matrices with a decoupled GLS path flow estimator," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 497-518, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
- Jin, Meihan & Wang, Menghan & Gong, Yongxi & Liu, Yu, 2022. "Spatio-temporally constrained origin–destination inferring using public transit fare card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Hazelton, Martin L. & Parry, Katharina, 2016. "Statistical methods for comparison of day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 22-34.
- Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
- Yang, Yudi & Fan, Yueyue & Royset, Johannes O., 2019. "Estimating probability distributions of travel demand on a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 265-286.
- Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
- Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
- Hazelton, Martin L., 2003. "Some comments on origin-destination matrix estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 811-822, December.
- Hazelton, Martin L. & Najim, Lara, 2024. "Using traffic assignment models to assist Bayesian inference for origin–destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
- Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
- Hazelton, Martin L., 2008. "Statistical inference for time varying origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 542-552, July.
- Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
- Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
- Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
- Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
- Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
- Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
- Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
- He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
- Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
- Watling, David P. & Hazelton, Martin L., 2018. "Asymptotic approximations of transient behaviour for day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 90-105.
- Katharina Parry & David P. Watling & Martin L. Hazelton, 2016. "A new class of doubly stochastic day-to-day dynamic traffic assignment models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 5-23, March.
- Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
More about this item
Keywords
Estimation Markov chain Monte Carlo Measurement error Origin-destination matrix Statistical linear inverse problem Traffic assignment;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y:2010:i:5:p:674-685. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.