IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i6p575-592.html
   My bibliography  Save this article

A stochastic estimation approach to real-time prediction of incident effects on freeway traffic congestion

Author

Listed:
  • Sheu, Jiuh-Biing
  • Chou, Yi-Hwa
  • Shen, Liang-Jen

Abstract

Real-time prediction of the effects of freeway incidents on traffic congestion is urgently necessary for the development of advanced freeway incident management systems. This paper presents a stochastic estimation approach to real-time prediction of time-varying delays and queue lengths which are regarded as two significant variables in examining freeway incident congestion in this study. In addition to system specification utilizing four groups of proposed lane traffic variables, a stochastic estimation approach which involves a discrete-time nonlinear stochastic model and an algorithm based on Kalman filtering is developed to estimate real-time delays and queues in the presence of freeway incidents. The proposed method is tested employing simulated data generated via the CORSIM simulation model. The preliminary test results indicate that the proposed method is promising. Utilizing the estimates of delays and queue lengths generated by the proposed method in real time, our further research will aim at developing time-varying incident effect indexes for real-time prediction of the impact magnitude of freeway incidents either in the temporal domain or in the spatial domain. We therefore expect that this study can make available real-time incident-related traffic information with benefits not only for understanding the impact of freeway incidents on traffic congestion, but also for developing advanced incident-responsive traffic management technologies.

Suggested Citation

  • Sheu, Jiuh-Biing & Chou, Yi-Hwa & Shen, Liang-Jen, 2001. "A stochastic estimation approach to real-time prediction of incident effects on freeway traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 575-592, July.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:6:p:575-592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00011-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. Szeto & Denos C. Gazis, 1972. "Application of Kalman Filtering to the Surveillance and Control of Traffic Systems," Transportation Science, INFORMS, vol. 6(4), pages 419-439, November.
    2. Sheu, Jiuh-Biing, 1999. "A stochastic modeling approach to dynamic prediction of section-wide inter-lane and intra-lane traffic variables using point detector data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 79-100, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jincheng Jiang & Nico Dellaert & Tom Van Woensel & Lixin Wu, 2020. "Modelling traffic flows and estimating road travel times in transportation network under dynamic disturbances," Transportation, Springer, vol. 47(6), pages 2951-2980, December.
    2. Jiuh-Biing Sheu, 2002. "A Stochastic Optimal Control Approach to Real-time, Incident-Responsive Traffic Signal Control at Isolated Intersections," Transportation Science, INFORMS, vol. 36(4), pages 418-434, November.
    3. Sheu, Jiuh-Biing, 2007. "Microscopic modeling and control logic for incident-responsive automatic vehicle movements in single-automated-lane highway systems," European Journal of Operational Research, Elsevier, vol. 182(2), pages 640-662, October.
    4. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
    5. Sheu, Jiuh-Biing, 2007. "Stochastic modeling of the dynamics of incident-induced lane traffic states for incident-responsive local ramp control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 365-380.
    6. Jiuh-Biing Sheu, 2003. "A Stochastic Modeling Approach to Real-Time Prediction of Queue Overflows," Transportation Science, INFORMS, vol. 37(1), pages 97-119, February.
    7. Jiuh-Biing Sheu, 2003. "Erratum: A Stochastic Modeling Approach to Real-Time Prediction of Queue Overflows," Transportation Science, INFORMS, vol. 37(2), pages 230-252, May.
    8. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    2. Sheu, Jiuh-Biing & Yang, Hai, 2008. "An integrated toll and ramp control methodology for dynamic freeway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4327-4348.
    3. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    4. Bekiaris-Liberis, Nikolaos & Roncoli, Claudio & Papageorgiou, Markos, 2017. "Highway traffic state estimation per lane in the presence of connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 1-28.
    5. Ngoduy, D., 2008. "Applicable filtering framework for online multiclass freeway network estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 599-616.
    6. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    7. Gazis, Denos & Liu, Chiu, 2003. "Kalman filtering estimation of traffic counts for two network links in tandem," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 737-745, September.
    8. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    9. Coifman, Benjamin, 2006. "Extracting More Information from the Existing Freeway Traffic Monitoring Infrastructure," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt34n479gz, Institute of Transportation Studies, UC Berkeley.
    10. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    11. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    12. Sheu, Jiuh-Biing, 2005. "A multi-layer demand-responsive logistics control methodology for alleviating the bullwhip effect of supply chains," European Journal of Operational Research, Elsevier, vol. 161(3), pages 797-811, March.
    13. Coifman, Benjamin & Varaiya, Pravin, 2002. "Deployment and Evaluation of Real-Time Vehicle Reidentification from an Operations Perspective," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6tp5w2gt, Institute of Transportation Studies, UC Berkeley.
    14. Coifman, Benjamin, 2003. "Estimating density and lane inflow on a freeway segment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 689-701, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:6:p:575-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.